
2021
Benchmark Report

The trends shaping the
global software industry
in a post-pandemic world

� 	 Foreword

�	 Global Trends in Software Build Quality

�	 The Impact of the COVID-19 Pandemic

	 on Software Development

�	 The Burden of Technical Debt

�	 Conclusion

Contents

2

7

12

21

28

1

The past year has been one unlike any other. In every corner of the world, COVID-19 has

triggered a mix of responses, from business closures to mobility restrictions to total

lockdowns. These events have clearly underscored the importance of digital capabilities

in sustaining operations and keeping people connected -- for which healthy software is

vital.

The 2021 SIG Benchmark Report explores what this year of upheaval has meant for the field of software

development. For the third consecutive year, we have analyzed the data in our software analysis database

-- now containing nearly 50 billion lines of code across 6.000 systems and 280+ technologies -- to shed

light on the following questions:

� 	 Have the dynamics of the pandemic affected how well software is built?

� 	 Which industry has proved to be the best at building sustainable software in 		

	 our annual ranking?

� 	 Which technology presents the highest software build quality in our annual ranking?

� 	 How have software developers been faring during the pandemic? Has the massive shift 	

	 to remote work over the past year impacted their well-being and productivity?

Foreword

2

In addition to the pandemic impacts, our attention remains with the global trends in software

development, including the ever-growing burden of technical debt. This report therefore also

includes an estimate of costs across the field related to technical debt. We answer the burning

question: Which part of that total debt would deliver a positive ROI when renovated? Using SIG’s

updated technical debt model, we demonstrate how much can be gained by focusing renovation

efforts in a smarter way.

As part of our ongoing mission to create a healthier digital world, we are pleased to present the 2021

SIG Benchmark Report. It is our hope that this report provides an informative look at the current state

of software engineering, while providing insights to shape and guide your development strategies and

further improve the digital health of your organization.

Dr. Magiel Bruntink
Dr. Magiel Bruntink is Head
of Research at Software
Improvement Group. He is
an internationally published
author in the field of software
engineering, with over 15
years of experience in research,
consulting, and education.
Bruntink holds a PhD in computer
science from Delft University of
Technology.

Dr. Luc Brandts
Dr. Luc Brandts is Chief Executive
Officer at Software Improvement
Group. He has worked in the
information technology industry
since 1994 when he founded
his company, BWise, growing
it to become a recognized
global market leader in the risk
management and compliance
space. Throughout his career,
he has also held various
board member and investor
roles. Brandts holds a Ph.D. in
mechanical engineering from the
University of Eindhoven.

3

Software Assurance requires both outside-in and inside-out
approaches

Outside-in

External quality Internal quality

Inside-out

Software System

Functionality

Implementation“Quality is defects in use” “Quality is
software construction”

Focus of most QA team,

focus on functional

suitability, correctness

and acceptance

Build quality drives

cost of ownership and

external quality

In order to fully understand the risks of a software system, it is not enough to look at the software
from the outside. Rather, it’s necessary to look at all the code, only then a full understanding is
possible. Seeing a demo, using the software, or trying to break in from the outside will show just
the tip of the iceberg of potential trouble.

Introduction

4

+2

HHHHI

Source code measurement is our tool to determine software
build quality

Perform measurements on
the code base

Aggregate measurements to
quality profiles

Translate quality profiles to
system characteristic scores

Translate to ISO 25010
sub characteristic scores

Translate to overall rating
of technical quality

1 - Measurements

2 - Quality profiles

3 - System characteristics

4 - ISO standard
sub-characteristics

HHHII

HHHHI

HHHII

+6

HHHHI

HHHII

HHHII

5 - Overall rating

Introduction

SEARCH

5

SIG has the largest software analysis database in the world

 6,300+ systems evaluated

 235 million+ Lines of Code per week

 nearly 50 billion Lines of Code
in data warehouse

 280+ technologies

The benchmark is formed by a certified and yearly calibrated

subset of the data in the SIG software analysis database.

Introduction

SEARCH

Clipboard-list-check

01
00

6

Global Trends in Software
Build Quality

The SIG software analysis database aggregates

the build quality of nearly 50 billion lines of

code across more than 6.000 different systems.

In last year’s edition of the Benchmark Report, we

observed, as we did in the prior year, that the overall

average build quality maintained a slow but steady

upward trend. We also saw Low Code technologies

taking a clear lead in the build quality race. Furthermore,

companies in the Energy, Oil, and Gas sector achieved the

highest build quality, on average. What happens when

we move our window of measurement forward by one

year? Read on!

Monitoring software build quality is a key component

of software assurance, in which you make sure that you

are on top of quality degradations, or alerted to lack of

progress of improvement efforts. This year in particular,

with the COVID-19 pandemic physically separating

teams, active software quality monitoring mitigates at

least some software concerns. At the same time, we are

reminded that our dependence on quality software has become even stronger in the virtual working

environments that many organizations scrambled to set up.

7

Software build quality continues to increase slowly, despite the
pandemic

� 	This graph shows the overall build quality

trend, as measured by our core Maintainability

rating, expressed in stars – 5 stars representing

the highest Maintainability rating. The data

underlying this plot, which runs from 2016

until 2021-Q1, consists of 4,000 distinct

software systems.

� 	 Software build quality, across all industries

and technology stacks, continues its upward

trend. In general, software has become easier

to change, more modular, and smaller as well.

This trend has been on the rise since 2016, even

despite the pandemic in 2020.

� 	 For this analysis, we are looking back at history

through the lens of the most recent SIG

Maintainability Model, which was calibrated

to the most recent data. The upcoming 2021

version of the model will be somewhat stricter

to accommodate for the build quality advances

made by the industry – that will require

organizations to continually improve their

software to stay at the same level.

COVID-19

Global Trends in Software Build Quality

8

We often receive the question as to whether

performance between industries can be

evaluated and compared.

� 	This year’s software build quality

ranking by industry is led by Industrial

Transportation, which has moved up

from second place in last year’s analysis.

� 	Systems in the Telecommunications

sector place last. The industry is

dominated by large and complex

systems, which require a stronger focus

on renovation.

� 	Note that the most important takeaway

is whether a sector is above or below the

overall market average (a score of 3.0). An

industry’s build quality ranking is bound to

fluctuate over time, as systems come and go,

grow older and larger, and perhaps decrease

in quality. In addition, the SIG measurement

models are re-calibrated annually, further

impacting where an industry places in the

ranking.

Build Quality Ranking by Industry: Industrial Transportation
leads the pack

2018 through 2020 Score Delta

1 Industrial Transportation 3.27 + 1

2 Banking 3.12 + 2

3 Insurance 3.10 + 3

4 Financial Services 3.09 - 1

5 Government 3.03 ==

6 Energy, Oil & Gas 3.01 - 5

7 Retail 2.85 ==

8 Software & Computer Services 2.82 + 1

9 Support Services 2.77 - 1

10 Telecommunications 2.61 ==

Scores are weighted by their (code) volume, counting only
the most recent snapshot for each system measured.

Global Trends in Software Build Quality

9

Build Quality Ranking by Tech Stack: Low Code maintains
narrow lead over Java/JVM technologies

2018 through 2020 Score Delta

1 Low Code 3.25 ==

2 Java/JVM 3.20 + 1

3 Scripting and mobile 3.18 - 1

4 Microsoft 2.92 ==

5 Packaged solutions 2.86 ==

6 BPM/Middleware 2.67 new

7 Legacy/3GL/4GL 2.37 ==

Scores are weighted by their (code) volume, counting only
the most recent snapshot for each system measured.

� Since last year’s Benchmark Report,

technology stacks have maintained a mostly

stable ranking with respect to their build

quality progress. Low Code technologies

remain in the lead this year, with Legacy

technologies again placing last. Close

contenders Java/JVM and Scripting and Mobile

technologies have swapped second and third

place.

� Last year’s ranking included a single category

containing Low Code and BPM/Middleware,

which has now been split into two. The

technical differences between Low Code

technologies and BPM and Middleware have

grown too wide to keep them together.

� Low Code systems tend to be small, with a

median of just 20 person-months, while the

median Java/JVM or Microsoft-based systems

are 25% or 60% larger, respectively. Also,

currently we still include the aging VB.Net

language among the Microsoft technologies,

which may change in the next edition of this

report.

� Although there are differences in the leading

technologies, they are small and partially

driven by the observation that Low Code

systems are on average smaller than coded

systems. We recommend to use this ranking

only indicatively for technology choice in your

specific situation.

Global Trends in Software Build Quality

10

The Impact of the COVID-19
Pandemic on Software Development

For software practitioners, the widespread shift to remote work has created a more

complex operating environment, as most collaboration and work previously done in

shared office spaces was moved to home offices and teleconferencing.

Since the onset of the pandemic, we have been monitoring

the impact of this major change on core software

development metrics, such as build quality and code

production, by measuring the rate of (code) change.

In the 2020 Benchmark Report, we observed that during the

start of the pandemic, in March 2020, a surprisingly high

number of projects were outperforming themselves with

respect to both build quality and code production. We now

provide an update in this latest edition of the report – has

the improvement sustained itself, or has the new reality of

home office work created new obstacles and inefficiencies in

the longer term?

We also report on the first results of an in-depth study that

SIG has launched in cooperation with Leiden University. In

this study, we survey developers across the globe to learn

how they are coping in the new work environment, any

impacts they are experiencing on their well-being and job

performance, and the support provided by their employers.

12

Decreased coding effort observed, but slightly increased
software build quality

We monitored a group of

approximately 300 systems

consistently month-over-month

and have compared their

performance during the

pandemic year (March 2020-

February 2021) to that of the

year prior (March 2019 up to

and including February 2020).

As part of this analysis, we evaluated these tracked systems’ coding effort and build quality.

� Clearly, these systems show a reduced average coding effort during the pandemic year, which is one

of the metrics relating to software productivity.

� In addition, we saw on average a slightly increased maintainability score during the pandemic year,

the core metric for software build quality.

� What does this mean? On average, less code was created or changed in the pandemic than before,

but at a slightly higher build quality level. The coding slowdown warrants a deeper dive.

The Impact of the COVID-19 Pandemic on Software Development

13

The effort expended on coding

is an important software

productivity aspect that we

approximate by measuring

added and changed code.

The data clearly show a decreasing

trend for average coding effort going

into and throughout the pandemic

year, despite a bump in Q3. On average,

the tracked systems show a 37% lower

expended coding effort in the pandemic

year compared to the year prior.

However, there are some

considerations:

� The trends prior to the pandemic already hinted at a coding slowdown. Some projects may have

been nearing their development goals.

� Earlier research in 2020 into the impact of the pandemic on software developers (Ralph and Baltes,

2020) reported negative effects on productivity due to lower well-being and lacking ergonomics, for

instance. More information on this topic can be found on page 16 of this report, where we share our

own survey results.

Coding effort slowed down during the pandemic
The Impact of the COVID-19 Pandemic on Software Development

14

Software build quality increased during the pandemic
The Impact of the COVID-19 Pandemic on Software Development

� The plots on the left show the

month-over-month average deltas of

the Maintainability and Modularity

ratings, which have a scale of 1

to 5 stars in the calibrated SIG

Maintainability Model.

� The average build quality of the

tracked systems increased a little bit

during the pandemic year, with only

the 2021-Q1 showing a decline. This

recent declining trend is something

we will carefully watch, as it may

continue. It may be the result of

the extended working form home

practices we’re discussing later in

this report. There is no obvious trend

visible, but overall, the pandemic year

outperformed the pre-pandemic year

by a slim margin.

� In particular, to maintain architectural quality, teams have to collaborate closely and make decisions

– something more difficult when everyone is separated and working from home. Plotting the data,

we see that, so far, teams have managed to continue doing this quite well, as Modularity, which

combines the architectural metrics in the SIG Maintainability Model, had positive deltas month-over-

month during the pandemic.

15

Developers’ well-being and productivity

In March 2021, SIG began a study together with Leiden University on how the COVID-19

pandemic has impacted the productivity and well-being of software

developers.1

We are following up on a global study into these aspects performed in early 20202 by researchers Dr. Paul

Ralph and Dr. Sebastian Baltes. Using an anonymous online questionnaire, we surveyed developers to

understand:

� How are they coping mentally?

� How do they assess their job performance prior to and during the pandemic?

� How can their organizations better support them in their home offices?

In this latest edition of the Benchmark Report, we share the first outcomes of this study, which is still

ongoing. So far, the survey has received several hundred responses across 17 countries, with the top

response rates coming from the Netherlands, the US, and the UK.

� Approximately 70% of respondents work for organizations that employ more than 100 employees

� Approximately 70% of respondents hold university degrees: bachelor (46%), master (34%), or PhD (4%).

� Respondents have on average 12 years of working experience in software development, of which only

 1.5 years working from home.

� 65% of respondents had not encountered COVID-19, whether personally, or through house mates,

 relatives, or friends.

1 https://www.softwareimprovementgroup.com/resources/pandemic-programming
2 https://paulralph.name/2020/03/27/pandemic-programming-questionnaire/

The Impact of the COVID-19 Pandemic on Software Development

16

The survey on developers’ well-being and productivity during the pandemic has
received several hundred responses across 17 countries, with the top response rates
coming from the Netherlands, the US, and the UK.

� One of the core topics of our 2021 study

is the job performance of developers

prior to and during the pandemic. In the

questionnaire, developers were asked several

questions to assess their own performance,

comparing themselves to their peers in

similar roles.

� Included in the graph are 90 responses

from software developers who switched to

working from home due to the pandemic.

� Looking at the plot on the left, while the

medians (horizontal bars) are quite close at

8.0 for pre-pandemic performance, and 7.5

during the pandemic, overall, we see a more

negative report for the pandemic period.

� In addition, during the pandemic period,

there are more outliers who gave themselves

a lower job performance rating.

Developers report lower job performance during the pandemic
The Impact of the COVID-19 Pandemic on Software Development

18

� The number of developers who

reported they weren’t productive

for at least some of their working

time, due to the pandemic, has

more than doubled to 60%. This

is a rather concerning outcome

that calls for a deeper dive into

how developer work can be

better facilitated.

� In line with the plot shown

before, developers report a more

modest job performance during

the pandemic (a well-known

inflated self-assessment): 95%

assess their pre-pandemic job

performance higher than their

peers, while 85% say the same for

during the pandemic.

� Developers report working less carefully and with less concentration during the pandemic, and

report two times more often that their work should have been of higher quality. The overall rate

is relatively low (below 30%), and we note that in the projects monitored by SIG, which are not

necessarily the same developers as surveyed, build quality increased a little bit more during the

pandemic than before.

� Although developers rate the quality of their pandemic-time work as less than before, the decrease

in productivity may have led to more time for quality. Clearly, structured focus on quality and

production is necessary without micro-managing developers.

Developers report a clear drop in productivity due to the
pandemic, working from home

The Impact of the COVID-19 Pandemic on Software Development

19

#
Support considered
(potentially) helpful

%

1
Buying new equipment we need to

work from home
54

2
Paying for some or all of my internet

charges
48

3
Reassuring that they understand if

work performance suffers
43

4
Taking equipment (e.g. monitors)

home from my workplace
35

5
Providing activities to occupy staff

member's children
35

#
Support considered helpful

but not available
%

1
Buying new equipment we need to

work from home
47

2
Paying for some or all of my internet

charges
45

3
Providing activities to occupy staff

member's children
35

4
Encouraging the use of work time

for professional training
29

5
Sending food to staff working from

home
27

Developers’ top-requested support measures often not provided
by their organizations

� Participants were asked to respond to 22

different statements regarding the support they

are receiving from their organizations. They

were asked to say whether the support is indeed

available to them, and whether they consider it

useful.

� In the tables here, we show the top 5 measures

considered most helpful (left) and the measures

that are most often lacking by the developers’

organizations (right). The majority (70%) of

developers are employed by organizations of 100

employees or more.

� 3 of the top 5 most helpful support measures are

often not available: purchasing equipment to

better facilitate working from home; paying for

internet costs; and helping with childcare. These

are clear areas where developers’ organizations

could focus to improve the working from home

experience of their staff.

� Organizations have adequately reassured their

staff of understanding potential impacts on

job performance resulting from remote work.

Furthermore, they are also providing for suitable

work environments by allowing employees to

borrow office equipment.

%s represent percentage of respondents included after data cleaning

The Impact of the COVID-19 Pandemic on Software Development

20

The Burden of Technical Debt
The term ‘technical debt’ is a metaphor for

describing technical deficiencies in source code.

It refers to the amount of deficiencies in internal

quality that make it harder to modify and extend

the system further and retain various qualities such

as maintainability, security, and availability.

The debt metaphor was introduced to clarify three main issues

of technical debt:

1.	 Technical debt can be acceptable, and even useful, to take

on (i.e. allow for a certain amount of deficiencies in the

code), e.g. to meet a shipping deadline or test a prototype

-- just as a company can take on financial debt to meet its

goals (sooner).

2.	 Technical debt can require “interest payments,” or, in

other words, the amount of time and resources you lose afterwards on developing or maintaining

the system, since you have to deal with technical limitations in your code base. This “interest”

compounds, since technical deficiencies often propagate to later code additions and changes,

creating a growing amount of technical debt that slows down development.

3.	 Technical debt can be paid back, by refactoring or renovating code to remove the technical

deficiencies and improve its quality. However, this requires spending development effort that yields

no visible improvements to the end-user and product owner: it is often challenging to convince them

that this is necessary to avoid going ‘technically bankrupt’ in the long run.

21

Low Visibility, High Impact

Technical debt in a software system represents all the quality-related deficiencies in that system.

Technical debt can be quantified: the cost of repairing all quality deficiencies in a software system1.

Repairing all deficiencies is unrealistic for technical and economic reasons, but the remaining technical

debt can slow you down.

High technical debt leads to expensive maintenance (as well as more defects and increased time to

market).

We will address the following two challenges of dealing with technical debt:

1. Technical debt is hidden, even for developers ARROW-RIGHT We need to make it visible to other stakeholders

2. There is way too much technical debt to remove it all ARROW-RIGHT We need to identify relevant technical debt

1 Nugroho, A., Visser, J. and Kuipers, T. (2011) ‘An empirical model of technical debt and interest’, in Proceedings -
International Conference on Software Engineering, pp. 1–8. doi: 10.1145/1985362.1985364.

de
ve

lo
pm

en
t e

ffo
rt

time

interest of technical debt Actual maintenance effort

Optimal maintenance effort

interest of technical debt

optimal maintenance effort

The cost and long term consequences

for all stakeholders is reflected by the

interest of technical debt.

The interest is the difference between:

1.	 The total effort needed for

development given a system’s actual

maintainability

2.	 The effort needed in the absence of

technical debt

The Burden of Technical Debt

22

� We use the term renovation for improving source code by removing technical debt. In this report,

we consider 2.500 systems measured in the past 3 years in the scenario where each system would

be renovated to recommended levels (4 stars). We estimated the investment effort, maintenance

benefits, and the Return on Investment (RoI).

� Benefits come from the reduced effort

required to maintain the improved

code. The maintenance level is further

quantified by the actual and historic

amount of code changes. If the change

rate is close to 0 for a system, renovation

will not pay off with maintenance cost

alone.

� In the graph we see that the majority

of systems have an RoI below 100%,

meaning that there is no positive

business case (within a five-year period)

for renovating them.

For the majority of systems, renovating technical debt does not
pay back in 5 years by reduced maintenance only

RoI =
Reduced Maintenance Effort

Renovation Investment

The Burden of Technical Debt

Positive business
cases to increase to
4 star quality

23

Technical debt strategy is the difference between saving 12% on
costs or spending 20% more

� Let’s illustrate the size of the

technical debt burden and the

large influence technical debt

strategies can have on costs.

We took all the systems in our

software analysis database from

the last 3 years, approximately

2.500 in total, and performed the

RoI calculations for each. With

those numbers in hand, the total

costs of the following technical

debt strategies (5 years horizon)

can be estimated:

1. Maintain as-is with no significant

quality improvements

2. Renovate all systems

3. Renovate high-RoI systems only,

leaving the rest as-is

� The chart above shows the estimated costs for each strategy. Yes, those are billions of Euros on the

axis; 2.500 systems are included. A technical debt strategy that renovates only the high-RoI systems

can save 12% on costs compared to maintaining as-is. However, renovating everything would

instead increase costs by 20% due to the renovation efforts not being sufficiently compensated by

lower maintenance costs.

� Note that in addition to lower maintenance costs, a higher speed of innovation or greater flexibility

of systems are often key reasons to consider renovation.

The Burden of Technical Debt

24

� Now that we have seen that technical debt renovation needs a strong focus in order to be cost-

effective, let’s zoom in a bit on the underlying technology stacks.

� Intuitively, renovating old and large legacy systems, which are almost never changed, would hardly

pay off with just reduced maintenance costs within a 5 year period. In the chart, this is clearly

the case: the relative costs of renovating all is highest for most technology stacks considered.

Maintenance cost savings

can be achieved by

renovating select systems,

but renovating all would

sometimes result in

massive overspends.

� Systems built in more

modern technologies

with a higher average

build quality level, smaller

system size, and higher

code change rate, could

benefit from overall

renovation efforts, but still

focusing on only high-RoI

systems reduces costs

further.

Technology stacks influence technical debt strategy outcomes
The Burden of Technical Debt

25

How to manage technical debt for higher returns on investment

� Make visible where technical debt resides, and how

it impacts future development, for all stakeholders.

� Identify the opportunities where refactoring code

to remove technical debt yields the highest ROI.

Prioritized improvement actions for a sample portfolio: the
improvement actions are generated by several analysis models
such as maintainability, security, and open source heath. The
actions are then scored on improvement effort needed and risk
reduction.

In this report, we have shown a

broad impact analysis of technical

debt at the system/benchmark level.

In practice, SIG and its clients take an

approach that is tailored to each context:

� Even when filtering the cases that

provide a high return on renovation,

there is still a need to decide how to

prioritize: our technical debt approach

uses more context information to select

the candidates that combine highest

ROI and lowest risks.

� In practice, renovation is best done on

subsystem/component level, which

allows for even more focused renovation

efforts with higher ROI.

� The ROI calculations and prioritization

can be fully automated on a portfolio

with the full range of technologies,

supporting both decision makers on

where to invest in quality improvement

and developers on where to start quality

improvements with the most benefits,

lowest efforts, and least amount of risk.

The Burden of Technical Debt

26

Conclusion
Despite perhaps the biggest change to the working life of software practitioners due to the

COVID-19 pandemic, the field has hardly been standing still. The most significant takeaways from

this third annual SIG Benchmark Report:

� Global software build quality has maintained its upward trend
	 Overall, global software build quality has continued to trend upward, even in these uncertain

pandemic times. That is what we observed for the teams and systems that are monitored by

SIG. We also see indications, however, both measured in code and reported (anonymously) by

developers, that work may have slowed down due to remote working. This warrants a closer look by

organizations, while considering their own context and software portfolios.

� Developers’ remote work needs are largely being left unfilled
	 While organizations have been supporting their developers with understanding of potential lower

performance due to working from the home office, various key developer needs, such as covering for

new (home office) equipment, internet charges, and child care, aren’t being met.

� Technical debt requires the attention of every CIO or software portfolio owner
	 Technical debt, a useful metaphor in discussing accrued build quality issues, remains an impactful

perspective that requires the attention of every CIO or software portfolio owner. We revealed how

remediation strategies should be informed by return-on-investment estimates based on historical

code change and build quality analysis. The cost difference is estimated at saving 12% on costs or

spending 20% more, depending on the successful focus of renovation effort on cases with a high

ROI. Furthermore, the technology stacks used also have a strong influence of the outcome in these

strategies.

28

Colophon

Copyright © 2021

by Software Improvement Group (SIG)

Authors: Dr. Luc Brandts and Dr. Magiel Bruntink

The information in this document may not be copied

or published, distributed or reproduced in any way

whatsoever without the prior written consent of SIG or

the legal consent of the owner.

Design: Plushommes

Art/Photos: Rawpixel

29

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

www.softwareimprovementgroup.com

marketing@softwareimprovementgroup.com

Getting software r ight for a healthier digital world

