
Software Improvement Group

Benchmark Report | 2023

THROUGH
THE SIG
LOOKING
GLASS

softwareimprovementgroup.com

Benchmark Report | 2023

THROUGH THE SIG
LOOKING GLASS

Amsterdam ©2023 Software Improvement Group

Here it is, our fifth SIG Benchmark Report on the state of
technology. We started this tradition five years ago, producing
fascinating results for the digital community annually. This
year is no different. We have great things to share with you,
with thorough data analysis behind it to substantiate our
findings. I would like to thank the entire team who worked on
this great piece of work. I hope you enjoy reading it as much
as we did creating it.

FOREWORD
Luc Brandts

[prompt]
picture of a canyon
viewed from above
with people on one

side and digital
hardware on the

other side

1

But first and foremost, digest the results, and put them into action. Some
of our findings are quite positive and can be seen as a compliment to
the digital world: we do see that, on average, the build quality is rising.
However, in all honesty, most of our findings are less favorable and
should require your immediate action. Read the section of your choice or
review the entire report: every section contains actionable findings.

There are many things to list here, but some really stand out. In no
particular order, here are a few things you can learn more about in the
report:

• Please take care of your architecture when using low-code: this is
getting messy, and action is required from the low-code world.

• Then, our new architecture model that integrates technical analysis
with people-aspect will show you how to double your speed of
innovation, how you can get rid of cloud impediments, and so on.

• Next, if you’re in AI: you’re doing wonderful work, and the world
is in awe of you all. But please remember it is still software you’re
creating, and what is being built is significantly worse than we would
expect. That’s a pity, as AI is surely not a temporary hype. It’s here
to stay, and so is your software: in other words, you’re creating
tomorrow’s legacy.

• Then, the use of open source. Our 2022 SIG Benchmark Report
already rang the alarm bells, but we’re adding a loud siren this
year. There is a lot to be said on the subject, but, for one thing, the
disconnect between business and IT priorities is showing very clearly
here: business critical systems get the same (i.e. quite bad) attention
as lesser important systems. Let’s work together to close the open
back door that open source is.

• To conclude, I would like to draw your attention to our first skill gap
benchmark report. Having assessed over 5,500 people in more than
180 countries, we now have a very good view of where the digital
world is with their skills. Our conclusion is: not so good. We observe
a skill gap of more than 50-60% for all (!) of the 41 digital skills,
demonstrating a need for upskilling.

As you can see, there is so much to share, so please read our report and
let us know what you think.

Luc Brandts, Group CEO

2

1

CONTENTreading guide
The annual SIG Benchmark Report looks at the enterprise
software industry through the SIG looking glass. SIG measures
software build quality on a global scale with an ever increasing
range of analysis capabilities. The 2023 edition spans 14 years
of measurements across more than 12,000 enterprise software
systems.

As we celebrate the 5th anniversary of our report, we are proud to present
5 diverse chapters with our latest data insights and calls to action.

Software build
quality: major
differentiator
between
industries and
technologies

SOFTWARE BUILD QUALITY is an
essential data point in enterprise

software DECISION-MAKING.
Without it, you are essentially

flying blind. Are you aware of how
well the quality of your software

portfolio stacks up against
PEERS? Or others using similar

TECHNOLOGY STACKS? Are the
GROWTH AND CHANGE patterns of

your applications in line with their
expected life cycles?

2
NEW SIG
ARCHITECTURE
QUALITY MODEL
PINPOINTS
COST, RISK, AND
SLOWDOWN
FACTORS

Did you know that great
software ARCHITECTURE
needs a great alignment

with the ORGANIZATIONAL
and SOCIAL aspects of

your teams? As well as a
solid design on top of the

right technological choices?
With OUR NEW MODEL, it is

possible to MEASURE AND
CONTROL these aspects. In
terms of resolution speed,

good architecture quality can
mean a factor of TWO TIMES

FASTER than poor quality.

p. 5 - 18

p. 19 - 32

3

3
AI and big data

systems plagued
by poor coding

AI is all the rage, also in the domain
of enterprise software. Are we seeing

a next generation of smart systems
that are being properly ENGINEERED

and coded? Or are we looking at a
PROVERBIAL GOLD RUSH? It’s mostly

the latter, although exceptions do exist.
We CRUNCHED THE DATA on the AI and

big data systems in our benchmark to
show you the differences. What we are

often seeing in AI systems is a LACK OF
TEST CODE, a LACK OF ABSTRACTION,

and an overall maintainability that
scores BELOW THE BENCHMARK.

4
VULNERABLE
OPEN SOURCE
REMAINS A
WIDE-OPEN
BACKDOOR

Every IT organization is on the HUNT
for the RIGHT PEOPLE with the RIGHT

COMPETENCIES. How to FIND them,
TRAIN them, and KEEP them? EXIN

and SIG are ASSESSING thousands
of IT professionals globally to find out

what they are good at. Surprisingly,
many are in positions where they

need UPSKILLING TO COMPETE
better in their current roles. At the

same time, DEMANDING POSITIONS
such as enterprise architecture and
leadership roles are truly becoming

SKILL HUBS. Those few sought-after
professionals are in a great position

to move to their NEXT ROLES and the
challenge will be to keep them on.

5First digital
skills benchmark

shows poor job
alignment

p. 33 - 40

p. 41 - 56

p. 57 - 64

Yes, it’s that bad. Open source
code is widely used to boost

productivity when building
systems. Each month, we are

seeing that 50% OF ENTERPRISE
SOFTWARE SYSTEMS are
vulnerable due to security

issues in open source libraries.
Business CRITICAL systems just

as much. Further, the fix speeds
of vulnerabilities still leaves a

lot to be desired. LEGISLATIVE
CHANGES such as the US

Cybersecurity Strategy and the
EU Cyber Resilience Act will soon

demand software producers to
have ZERO VULNERABILITIES. Is

your team ready?

4

SOFTWARE
BUILD QUALITY
Major differentiator between
industries and technologies

 Magiel Bruntink / Pepijn van de Kamp / Benedetta Lavarone

In order to fully understand the risks of a
software system, it is not enough to look at the
software from the outside. You really need to look
at all the code, only then a full understanding is
possible. Seeing a demo, using the software, or
trying to break in from the outside will show less
than 10% of potential trouble.

[prompt] a photographic
picture of a world in the
future as a mix of happy
people working in a modern
office doing digital work and
industrialization elements like
heavy machines in light colors
blue and white and green and
yellow

1
5

This chapter will start by explaining a few concepts and measurements
that SIG employs in its software assurance business. You will find the
following topics in the next sections:

1. Looking at enterprise software from both inside and outside: SIG’s
model of build quality and its global measurement across 12,000
enterprise software systems.

2. Software build quality across industries and technology stacks:
The yearly recurring rankings of build quality in the top 10 industry
sectors and top 10 software technology stacks.

3. Software life-cycle impacts growth and change estimation by an
order of magnitude: Our novel analysis of the growth and change
rates of software systems depends on their life cycle phase.

A core element of SIG’s software assurance is the measurement of
maintainability, an aspect of software quality as defined by ISO/IEC
25010:2011. Maintainability is a major factor in keeping software-related
costs low, and business agility high. With Sigrid, SIG has measured
maintainability and its underlying metrics for 12,000 of our client’s
software systems over the years.

OUTSIDE-IN

External quality Internal quality

INSIDE-OUT

SOFTWARE SYSTEM

Functionality

“Quality is absence
of defects in use”

“Quality is software
construction”

Focus of most QA
team, focus on
functional suitability,
correctness and
acceptance

Build quality drives
cost of ownership

and external quality

Implementation

IMAGE
LOOKING AT ENTERPRISE SOFTWARE FROM BOTH INSIDE AND OUTSIDE

6

Overall, we are seeing a continuing trend of gradual improvement
of the main build quality properties. Each year we re-calibrate our
maintainability measurement model to include the latest data and to
conform to ISO/IEC 17025 standard for test and calibration laboratories.
The latest model is then applied to our historical data set to have a
normalized view of the past year’s performance.

Globally speaking, a gradual upwards trend build quality across the
enterprise software domain means that our measurement models become
more strict over time as well. There is a need to continuously improve the
software in order to compete with the market, both in functionality and
maintainability.

HHIII

HHHII

HHHHI

2021 2022 20232020

Maintainability
Analyzability
Modifiability

Modularity
Reusability
Testability

GLOBAL BUILD QUALITY AS MEASURED BY SIG
Including 100K person-years worth of enterprise software

CHART-GANTT

Build
quality
properties

W
ei

gh
te

d
M

ea
n

Ra
tin

g

7

1 https://www.softwareimprovementgroup.com/software-analysis

Compared to previous years’ benchmark reports, this year we are
reporting with updated architectural metrics to give a better reflection
of architectural quality in modern software systems1. Underlying the
Modularity property, the aging Component Balance metric was replaced
with Component Entanglement. Component Entanglement measures
to what extent components are adhering to good layering and code
dependency patterns.

Looking back at the past three years, we observe that the average
Modularity rating (purple line) is in gradual decline, in contrast to the
other build quality properties. The implication is that the architecture
aspect of build quality needs more attention to prevent further decline.
For this reason, SIG created a new Architecture Quality model: the first
outcomes of that are presented in the next chapter.

As our dataset at this point contains measurements from all kinds of
enterprise software technology, from over 300 different technologies,
ranging from Cobol to Java and C#, to Python and JavaScript, in the
following we zoom in further to point out the areas of concern more
specifically.

[prompt] a photographic picture of a world in the future as a mix of happy people working
in a modern office doing digital work and industrialization elements like heavy machines in
light colors blue and white and green and yellow

8

2. Software build quality across industries
and technology stacks

Software industry sectors
Let’s start by slicing the SIG Build Quality benchmark by software
industry sectors. Most enterprise software producers have a clearly
defined target industry like Banking or Retail, for instance. We
further include Government as a broad category of different kinds of
governmental and regulatory responsibilities. Furthermore, the category
Software & Computer Services includes clients that are active across
many different industries or are focussed on clientele in the software
industry itself.

Our 2023 top 10 ranking of software industry sectors can be seen in the
following table. The Delta column indicates ranking changes compared
to 2022. Overall, the ranking remains rather stable, with a position swap
between first and second place, where Energy, Oil & Gas companies are
again leading the pack. Government systems gain a place at the expense
of Insurance. This year’s newcomer Health Care enters at position #8,
slightly below the market average of 3.0 stars.

In 2020 we published our industry sector ranking for the first time. Back
then, the margin between #1 and #10 was about .51 stars, while we are
now looking at a difference of .64 stars. The top sectors are gaining,
rather than the lower performance losing stars. The rates at which legacy
technologies can be phased out play a major role in these trends. Trailing
industries should therefore increase their actions toward modernization to
avoid being disrupted by newcomers.

9

• Scores range between 0.5 and 5.5 stars in the SIG Maintainability
Model, calculated as mean maintainability weighted by systems’
volume, for each system’s most recent measurement.

• Industry sectors or technology stacks have at least 50 systems across
at least 10 clients.

• The table only shows the top 10 ranked industry sectors.
• For industry sectors, the deltas are rank position changes since the

2022 Benchmark Report.

Enterprise software technology stacks
Compared to previous editions, we thoroughly revised the technology
stack categories to better align with modern developments like systems
built-in web technology exclusively. In general, we classify a system by
looking at its most dominant programming language. The major changes
compared to last year are:
• Introduction of the Web/Templating category for systems built mostly

in web technologies like JavaScript or TypeScript for instance.
• The mainstream languages Java and C# are now grouped together

with other modern general-purpose languages like Python, Go, and
Kotlin.

• System programming languages, like C and C++, were moved from
Legacy 3GL/4GL to a new Embedded/System category.

• Database language, including SQL dialects, were moved from Legacy
3GL/4GL to a new Database category.

Delta Top 10 Software industry sectors 2020–2022 Score
1 ARROW-CIRCLE-UP Energy, Oil & Gas 3.40

2 ARROW-CIRCLE-DOWN Industrial Transportation 3.34

3 Banking 3.33

4 ARROW-CIRCLE-UP Government 3.25

5 ARROW-CIRCLE-DOWN Insurance 3.22

6 Financial Services 3.05

7 Software & Computer Services 2.98

8 new Health Care 2.92
9 ARROW-CIRCLE-UP Telecommunications 2.92

10 ARROW-CIRCLE-DOWN Retail 2.76

LIST

10

These changes make a comparison of the ranking with last year less
meaningful. We observe that the Low Code category is no longer the
leader of the top 10, which it has been since 2020. The new leaders are
the front-end focused category Web/Templating and the existing BPM/
Middleware categories.

Systems built only in BPM/Middleware techs are typically just a few
person-months in size. That fact makes the category adaptable and able
to climb the ranking relatively quickly (up from #6 last year).

Of course, these rankings are mostly indicative. An actual choice of
technology stack depends on many factors depending on application
type, organization, and other factors. Within each industry sector there
can also be high- and low performers that may not be reflected by the
averages shown here.

For the Low Code category, we want to share the following additional
analysis. Looking at Component Entanglement, one of the underlying
metrics for architectural quality, we see a stark difference with competing
modern general-purpose languages. Component Entanglement is
a measure of overall layering and adherence to good architectural
principles.

As the graph shows, there is a growing difference between Low Code
and Modern General Purpose languages. The vertical axis is the SIG
rating scale from 1 to 5 stars (higher is better), while the horizontal axis
shows the volume of systems. As system volume goes up, on average,

Top 10 Software technology stacks 2020–2022 Score
1 Web/Templating 3.40
2 BPM/Middleware 3.33
3 Low Code 3.22
4 Modern general purpose 3.18
5 Configuration 2.94
6 Scripting 2.84
7 Embedded/System 2.73
8 Packaged Solution Customization 2.57
9 Legacy 3GL/4GL 2.45
10 Database 2.45

LIST11

Low Code systems quickly drop their Component Entanglement score. This
indicates a stark deterioration of architectural quality, and thus future
maintainability of Low Code systems as they grow larger.

Good architectural guidelines induce a clear component layering and
allowable dependency structure. Specifically, cyclic or layer-skipping
dependency patterns should be avoided. In Low Code systems, developers
are not always aware of or equipped to adhere to such guidelines.
Furthermore, tool support to visualize and enforce architectural best
practices is not yet in place on every Low Code platform.

When adopting Low Code platforms, it is strongly recommended to follow
up on the following points to prevent the creation of a new generation of
legacy software:

CHART-GANTT

Component Entanglement

100 1,000

HIIII

HHIII

HHHII

HHHHI

HHHHH

Volume (Person Months)

Tech stack Low Code Modern general purpose

Key Finding: Low code systems are more
entangled, especially at larger system sizes.
This makes them harder to maintain, compared
to systems built in modern general-purpose
languages.

LIGHTBULB-ON

101

12

• Utilize guidelines and tooling for architectural design also in Low
Code, such as those available in the Sigrid platform.

• Make Low Code developers aware of the future growth of their
applications and ask them to prepare their design accordingly.

• Ensure that Low Code developers have sufficient knowledge and
expertise in architectural design.

3. Software life-cycle impacts growth and
change estimation by an order of
magnitude

Enterprise software needs to evolve in order to stay relevant in the
context in which it is used. Life-cycle management of software systems is
a core portfolio governance practice that aims at:
• budgeting,
• planning and tracking evolution,
• maintenance, including security,
• modernization activities.

Without performing such activities, the durability of the software is
impacted, and code bases fall into the next life cycle phase (regardless of
whether this is desirable or not).

Key Findings:
• Software systems in different life-cycle

phases have very different growth and
change characteristics, impacting estimation
by an order of magnitude.

• While systems are in Evolution, they
typically grow at 10% per year and have a
change rate of 47% per year.

• In Maintenance, the growth of a code base
stagnates while existing code is still changed
at a typical rate of 15% per year.

LIGHTBULB-ON

13

Software lifecycle management within organizations with large software
portfolios is hard to do efficiently. We recommend tracking high-level
KPIs to indicate whether the expected maintenance activities take place
according to the expected life-cycle phase.

Over the past years, we collected a dataset on about 500 enterprise
software systems, tracking their growth and life cycle phases. The
dataset spans the years 2020 to 2022, amounting to approximately
1,000 years of software evolution and maintenance.

Before diving in, we need to define the typical life-cycle phases of
enterprise software systems:

• Initial development
The Initial Development phase starts with the first code being written
and typically ends when the software is considered both stable
and feature-rich enough to be rolled out to the full target group of
users. In this phase, the software is typically written by one or more
dedicated development teams. In the initial development phase, the
rapid growth of new code volume and a large amount of changes to
the existing code is expected.

• Evolution
After going into production, typically evolutionary activities take place:
addressing feedback from users on existing features, adding more
features to the software, and working on non-functional aspects of
the software (e.g. increasing scalability) as the user base grows. The
foundation of the software is now in place. In this phase, the software
is typically under development by one or more dedicated teams.

• Maintenance
In the Maintenance phase, the code base is typically brought under
the responsibility of a development team that maintains multiple code
bases (no dedicated team). In this phase, the ability of this team to
make changes to the existing software depends on the degree to
which knowledge of the code base is still available in the team, as
well as the quality of the code base, documentation, and integrity of
the architecture. Typical activities that are performed in this phase
are handling small change requests, bug fixes, and keeping the
underlying software libraries, frameworks, and other infrastructure
components up to date.

14

52%

10%
0% 0%

168%

47%

15%
3%

0%

25%

50%

75%

100%

125%

150%

175%

200%

INITIAL
DEVELOPMENT

EVOLUTION MAINTENANCE DECOMMISSIONING
/ EOL

Yearly growth (median) Yearly change (median)

• Decommissioning
In this phase, it is time to execute change activities that are needed
for the sun set of the software system. Functionality and users are
migrated to other systems. No major changes are typically made to
the code base at this stage, other than changes that are needed for
phasing out specific functionality or to keep the software in a safe
and secure state (e.g. patching security vulnerabilities).

• End of life
In this phase, the software system is switched off and no more
changes are made to the software. The code base and related
artifacts are safely archived.

Let’s have a look at our data on 2 high-level KPIs that can help with
tracking evolution and maintenance activities:

• Yearly growth rate: A percentage that indicates the yearly growth of
code volume.

• Yearly change rate: A percentage that indicates the amount of
changes done to existing code.

YEARLY GROWTH AND CHANGE RATE OF ENTERPRISE SOFTWARE
SYSTEMS PER LIFE-CYCLE PHASE

LIFE-CYCLE PHASE

CHART-LINE-UP

Based on analysis of code changes to 500 enterprise software systems between 2020 and 2022

15

The graph above shows that software systems in different life cycle
phases have very different growth and change characteristics.

• Initial Development Phase: As expected, significant growth (52%)

and change (168%) occur during this phase, with a large variance in
the data. Code bases can double, triple, or even quadruple in code
volume on a yearly basis as new code is added and existing code is
modified.

• Evolution Phase: Growth of systems in this phase now stabilizes to
about 10% per year, while existing code still changes at a significant
rate of 47% per year. This indicates that many modifications to
existing functionality are made in this phase while still adding new
features.

• Maintenance Phase: In this phase, typically 15% of the existing
code is changed on a yearly basis, while the growth in terms of code
volume stagnates (with a median of 0% yearly growth and a variance
of -3% to 8% growth per year). This is an indication that only small
change requests, bug fixes, and security patches are performed,
while the addition of new functionality is very limited in this phase.

• Decommissioning: As expected, in this phase code bases have
typically stopped growing (median of 0% with a very small variance).
Also, the yearly change rate drops to 3%, indicating only changes
are made that are needed to either keep the lights on or switch off
functionality.

[prompt] picture of
great software design
showing from inside a
computer

16

The data obviously shows variance. These numbers should be used as
initial guidance, and a more detailed SIG analysis may be required to
adequately forecast a specific system of a portfolio.

It’s clear that the software lifecycle phases have a major impact on yearly
growth and change rates. What are the implications? We see two major
recommendations:

1. Organizations should further rationalize software portfolio
management by making lifecycle phases explicit for each software
system. Following that, year-over-year tracking of code growth and
change rates should be evaluated against known benchmarks, such
as the dataset presented in this report.

2. With the first part in place, software estimations should be enhanced
following defined lifecycle phases. Code growth and change are
major factors in the effort necessary to maintain and enhance the
software. We advise fine-tuning and using these metrics in budgeting,
decision-making, and portfolio roadmap design.

Yearly Growth Yearly Change
Low Median High Low Median High

Initial Development 8% 52% 215% 29% 168% 562%
Evolution 0% 10% 33% 10% 47% 149%
Maintenance -3% 0% 8% 3% 15% 53%
Decommissioning
& End of life

-1% 0% 2% 0% 3% 16%

LIST

[prompt] picture of
great software design
showing from inside a
computer

17

MAINTAINABILITY MEASUREMENT IS OUR TOOL TO DETERMINE
SOFTWARE BUILD QUALITY

+2

HHHHI

Perform measurements on
the code base

Aggregate measurements to
quality profiles

Translate quality profiles to
system characteristic scores

Translate to ISO 25010
sub characteristic scores

Translate to overall rating
of technical quality

1 - MEASUREMENTS

2 - QUALITY PROFILES

3 - SYSTEM CHARACTERISTICS

4 - ISO STANDARD
SUB-CHARACTERISTICS

HHHII

HHHHI

HHHII

+6

HHHHI

HHHII

HHHII

5 - OVERALL RATING

SEARCH

IMAGE

18

NEW SIG
ARCHITECTURE
QUALITY MODEL
pinpoints cost, risk,
and slowdown factors

Dennis Bijlsma / Lodewijk Bergmans 2

[prompt] an image from a
technical point of view visual
difference between a good
building and a bad building

19

Software engineering is a socio-technical activity. Software
is built by teams of people, working together to produce
a joint product. High performers in socio-technical
architecture quality show faster issue resolution times. To
avoid the problems related to low architecture quality, it is
recommended to avoid large system sizes, consistently pursue
the reduction of coupling between components, and pay
attention to the even distribution of developer activity across
the system components.

The SIG Architecture Quality model measures the socio-
technical architecture of software systems, providing insight
into the ability of the architecture to evolve and scale.

Organizations have long been under pressure to evolve their software
landscapes in a way that aligns with ever-changing business demands.
Systems no longer able to meet these changing demands are commonly
referred to as legacy systems, which need to be modernized to address
these challenges.

IT teams everywhere want to make the leap to modernization, but such
an initiative presents enormous challenges and risks. In fact, 74% of
organizations fail to complete legacy modernization projects, according to
a recent report by Advanced2.

“Legacy” means much more than just outdated technology. Rather, it
refers to any pre-existing software solution that has become too fragile
for changes to be timely, predictable, and reliable, usually due to poor
architecture, or team knowledge loss.

SIG uses an Architecture Quality Model to quantify these aspects of
socio-technical software architecture. The model captures six architecture
aspects, covering both technical and social aspects, and evaluates the
results against other systems in SIG’s benchmark.

2 https://www.oneadvanced.com/trends-report/2020-21/

20

Architecture
Quality

Structure

Technology
Stack

CommunicationKnowledge

Data AccessEvolution

PUZZLE

🔌

NETWORK-WIRED

DATABASE

PEOPLE-GROUP

ARROWS-SPLIT-UP-AND-LEFT

IMAGE

Each architecture aspect influences the degree to which the system can
be easily changed or extended. The six aspects are:

• Structure: The grouping and organization of functional and technical
areas in a code base.

• Communication: The dependencies between functional or technical
areas in a code base.

• Data Access: The way various components depend on databases
and other data stores.

• Technology Stack: The combination of technologies used in the code
base and their associated risks.

• Evolution: How the frequency and distribution of changes affect a
code base over time.

• Knowledge: The degree to which activities on, and knowledge of, a
code base is distributed among team members.

In this chapter, we will discuss how architecture quality is related to
development speed, how architecture quality requires attention in addition
to the maintainability of the source code, and what the key improvement
areas are for establishing and maintaining good architecture quality.

21

1. Improving socio-technical architecture
leads to faster issue resolution time

As the amount of software in organizations continues to grow, those
same organizations need to keep innovating to address their customers’
ever-increasing expectations. One innovation trend is the move towards
microservice architectures. This architecture pattern avoids large,
monolithic applications in favor of many small independent components.
Those components, called microservices, each focus on one specific
responsibility.

So are microservices just a fad that is already dying out, or are these
principles here to stay? If we look at SIG’s benchmark data, we see
that microservice architectures have become mainstream around 2017,
and this has caused a significant increase in the average number of
components per system that is still visible to this day. This means the
trend towards systems that consist of many small components is both
widespread and showing no signs of slowing down.

However, microservices are not entirely independent in practice. Their
code is independent, but they still communicate through APIs, interfaces,
middleware, or databases. Though the components/services are no
longer coupled on the code level, there are still other types of coupling
that developers need to consider.

This doesn’t mean microservice architectures are suddenly a bad idea
or have no benefits. Instead, this simply means that designing a system
architecture needs to carefully consider people, code structure, interfaces,
and deployment.

As explained in the introduction to this section, SIG has introduced an
Architecture Quality Model that captures these challenges and trade-
offs. When done well, a good software architecture will facilitate people
to work independently by reducing coupling (both technical and social/
organizational).

So can we quantify those benefits? For an initial analysis, we took 50
systems from SIG’s benchmark, with an average size of 40 person-years
of code. For those systems, we then compared their architecture quality
(as measured by SIG’s model) with their issue resolution time (i.e. time-to-
market for changes and new features).

22

HHIII

HHHII

HHHHI

Issue resolution time in days

Relation between architecture quality and issue resolution time

CHART-GANTT

This diagram shows a correlation between architecture quality and issue
resolution time. When it comes to architecture quality, it is, on average,
30% faster to make changes in a 4-star system than in a market-average
system. Reversely, making changes to a 2-star system will be about 40%
slower.

Key Finding: Systems with 4-star Architecture
Quality resolve issues two times faster than
2-star systems.

LIGHTBULB-ON

[prompt] create a photo-realistic
image of a running woman on a
racetrack in a modern setting in
blue and green, complemented by
orange. She has to run from the
left side to the right side. The body
is complete, but she has a robotic
arm. To show the speed, there must
be traces showing binary numbers

0 10 20 30 40 50 60 70 80

23

2. Measure maintainability and socio-
technical architecture to determine
technical strategy

Historically, most attention on legacy systems has focused on the
functional, operational, and technical challenges surrounding such systems.
However, socio-technical architecture is increasingly a focus area, being
named in a report by Ardoq3 as the #1 trend for enterprise architects.

SIG considers maintainability to be the foundation for ensuring agility and
flexibility. So how does the SIG maintainability rating relate to the socio-
technical software architecture ratings?

Renovate or retire Rearchitect

Refactor Retain

HHIII

HHHII

HHHHI

HHHHH

HHIII HHHII HHHHI HHHHH

Maintainability

Ar
ch

ite
ct

ur
e

qu
al

ity

Maintainability vs. Architecture Quality
CHART-SCATTER-BUBBLE

3 https://content.ardoq.com/enterprise-architecture-trends-infographic

This chart shows the maintainability and architecture ratings for all
systems where SIG evaluated both aspects in 2022. The x-axis depicts
a system’s maintainability rating, while the y-axis depicts the socio-
technical architecture rating. The size of each dot represents the size of
each system. The colors are used to easily identify each quadrant.

This chart shows that maintainability and socio-technical architecture are
mostly independent challenges: there are many systems that have poor

Ar
ch

ite
ct

ur
e

Q
ua

lit
y

24

maintainability but acceptable socio-technical architecture, but there are
also many highly maintainable systems that have poor architecture. This
means that, depending on which quadrant your system is located in, you
can decide to focus on specific quality aspects first.

Each of the quadrants can be characterized by the most likely action to
consider:

• Renovate or retire: in the bottom-left corner are systems with both
low maintainability and low architecture quality; these systems are
candidates for serious quality improvement, or to be retired
completely.

• Refactor: these are the systems with a sound architecture quality,
but low maintainability, hence refactoring the code to improve
maintainability is a worthwhile consideration.

• Rearchitect: this quadrant contains the systems that have a high
maintainability, but suffer from low architecture quality. Especially
for systems that are expected to evolve substantially in the future,
it may be a worthwhile investment to re-architect the structure and
organization of the system.

• Retain: The top-right quadrant contains systems with both good
architecture and high maintainability, so these systems are in a good
situation for further enhancement and evolution.

The size of the dots also reveals that most of the systems in the ‘retain’
category are smaller systems, which is generally also a trend for high
maintainable systems. For architecture quality, the size of the systems
matters much less: there are many mid- to large-sized systems with high
architecture quality, even though we see that the largest systems are in
the renovate/retire category.

Key Finding: Our architecture benchmark
confirms that larger systems often suffer in
quality - but not always, so it is indeed possible
to create big systems at high architectural
quality. High architecture quality allows for
systems to be refactored more easily and kept
maintainable.

LIGHTBULB-ON

In the next section, we investigate which factors most strongly influence
architecture quality and which are the most relevant areas to focus on to
ensure good architecture quality and an evolvable system.

25

3. Coupling and knowledge are the main
challenges for socio-technical
architecture

In the previous section, we explained the challenges that organizations
face in their socio-technical architecture, especially when it comes to
modernizing legacy systems. But what factors contribute most to these
challenges?

SIG’s Architecture Quality Model produces an overall rating from 1 to
5 stars, but this rating is actually composed of 10 underlying system
properties. Exploring the benchmark data for these system properties will
help to determine which properties are the biggest challenge on the road
to good architecture.

CHART-GANTT

The above diagram shows the top five properties where high architecture
quality systems outperform the medium quality systems: it shows how
the average high performer compares to the average system in the
benchmark for each of the properties. More precisely, each bar shows the
delta between the median rating of the high performers and the median

Data coupling

Communication centralization

Component freshness

Component coupling

Knowledge distribution

0% 50% 100% 150%

What aspects distinguish the high performers on architecture quality?
WHAT ASPECTS DISTINGUISH THE HIGH PERFORMERS ON
ARCHITECTURE QUALITY?

Pr
op

er
ty

26

rating of the mid-performers in the benchmark. A significant delta for a
given property indicates that, for most systems, there is significant room
for improvement, especially for that property.

Key Finding: Knowledge Distribution,
Component Coupling, and Communication
Centralization are the big factors of high-
quality architecture in the SIG architecture
quality benchmark: get these right to increase
architecture quality.

LIGHTBULB-ON

The system properties with the most significant deltas are Knowledge
Distribution, Component Coupling, and Communication Centralization.
These properties cover very different aspects of the architecture:
Communication Centralization and Component Coupling cover technical
coupling; the dependencies between different parts of the code. More
dependencies, spread more widely across the code, makes the code
harder to change, and causes changes to one component to ripple
through to other components (often impacting additional development
teams).

Knowledge Distribution indicates the degree to which developers can
effectively work in parallel, with a joint knowledge that covers the entire
code base: it measures to what extent there is a balanced distribution
of development activity across all software components. This means that
there are developers with recent knowledge about all parts of the system
and that developers do not work too much on the same parts of the
code, which is a known source of inefficiencies and bugs4.

The above conclusions about the key areas influencing architecture
quality, as derived from applying the architecture quality model on a
large set of systems analyzed by SIG, are very well complemented by
the results of a poll for ± 150 software architects that SIG organized
on LinkedIn. The following chart summarizes the answers to one of the
questions.

4 Chuanqi Wang, Yanhui Li, Lin Chen, Wenchin Huang, Yuming Zhou, Baowen Xu, Examining the
 effects of developer familiarity on bug fixing, Journal of Systems and Software, Volume 169, 2020

27

Of the responding software- and enterprise architects, 50% considered
the coupling of the software landscape as the main challenge for
modernization, and in the second place, 29% considered limited system
knowledge as the main challenge. So for this aspect, the Architecture
Quality model and architects are well aligned about the key challenges.

4. Improve Architecture Quality with
incremental modernization principles

In the previous sections, we have seen that socio-technical architecture
quality is a separate quality aspect of software systems, which
is becoming increasingly important as the complexity of software
architectures is increasing.

The SIG architecture quality model aims to bring better insights into the
ability of an architecture to evolve swiftly. The underlying metrics of the
model offer suggestions on what properties of the system can (or need to
be) improved.

Based on SIG’s experience in helping organizations to modernize and
improve their architecture, we recommend the following best practices for
ensuring a future-proof architecture:

7%14%29%50%

Creating new stability issues

Working in many areas at once

Limited system knowledge

Landscape is highly coupled

SURVEY: WHAT DO YOU SEE AS THE MAIN CHALLENGE IN
MODERNIZING YOUR CURRENT SOFTWARE LANDSCAPE?

CHART-GANTT

28

SIG recommended practice:
DEFINE ARCHITECTURE PRINCIPLES, NOT RULES.
An evolving architecture means it is not possible to fully define the
architecture up front. Nor is this desirable. Having independent systems
and components should facilitate the teams working on them to adapt
those systems and components, without the need for a central decision
authority to approve every single change. Teams should be able to guide
their own architecture as long as they follow the general direction laid out
by the organization’s architecture principles.

These architecture principles should help guide teams in decision-making
without dictating or micro-managing every single aspect. For example,
defining a list of which services are allowed to communicate with each
other easily becomes unworkable. In a landscape with hundreds or
even thousands of services, this list will quickly become extremely long.
Moreover, the list will keep changing as the landscape is continuously
evolving. Having to approve every modification to the list quickly becomes

1. Define
architecture
principles,
not rules

3. Address
architecture
in an
incremental
fashion

2. Capture the
rationale for
architecture
decisions

IMAGE

29

a bottleneck, especially when the person needing to approve the change
is not a member of the team.

It is, therefore, better to define general guidelines and principles and
then let the teams decide how to achieve them. As a simple example:
communication between services could be allowed assuming they only
access each other via REST APIs.

Obviously, some sort of feedback loop is still needed to make sure the
principles are actually applied in practice. This is where SIG’s architecture
quality model can help: low ratings can indicate that a principle is not
followed, or that a new principle needs to be defined.

SIG recommended practice:
CAPTURE THE RATIONALE FOR ARCHITECTURE DECISIONS.
Software architecture is often a series of trade-offs. However, for people
not involved in the original decision, it is often no longer clear what the
trade-off was or how that trade-off led to the decision.

One approach to capturing these decisions is Architecture Decision
Records5 (ADRs). Note that ADRs are not some kind of technical rule,
they are essentially a document. But having such a document can be a
useful communication device, as it creates a history that allows people
to keep track of trade-offs made in the past. The code and architecture
themselves can only communicate the current state, but not how that
current state came to be.

Note that recording decisions doesn’t make them permanent or
immutable. It is still perfectly fine to revisit architecture decisions,
especially during changing circumstances. In fact, having an Architecture
Decision Record makes it easier to revisit decisions, since there is a clear
overview of which decisions were made and why.

5 https://www.softwareimprovementgroup.com/using-architecture-decision-records-to-guide-your-architecture-choices/

30

[prompt] a picture of
digital growth in fancy
colors and binary code

31

SIG recommended practice:
ADDRESS ARCHITECTURE IN AN INCREMENTAL FASHION.
Addressing technical debt at code level is often done using small,
incremental refactorings. Such an approach leads to lower risk, as
the scope of changes is smaller. In many organizations, architecture
changes do not follow this agile approach and tend to be structured into
“projects” where large changes are made over a period of time.

Incremental architecture modernization removes some of the risks
associated with architecture changes: small, incremental changes have
a smaller scope and, therefore, lead to less stability risk. Moreover, it
avoids a situation where architecture modernization is directly competing
with functional changes.

Changing the architecture in an incremental way often seems unfeasible.
And indeed, you will not be able to solve the problem of thousands
of unwanted dependencies between two systems in a single sprint or
iteration. But you can divide the overall goal into smaller parts: for
example: first investigate dependencies between subcomponents and
strive to change those within a sprint.

The system properties in the SIG Architecture Quality Model map directly
to architecture modernization techniques that can be applied in this way:

• Address the coupling between architecture components
There is a large body of (architecture) design patterns that can be
applied to reduce various forms of coupling.

• Improve communication centralization
This requires especially a disciplined approach to group or reduce
outgoing calls, as well as a focus on developing APIs that are cleanly
separated from the implementation of the component.

• Reduce the size of the system
By cleaning up ‘dead’ or unused code, reducing the scope, improving
code reuse within the system or by adopting more standard (library)
solutions.

To ensure these architecture improvements remain a point of attention,
these aspects also need to be incorporated into the definition of done for
each sprint. This allows for architecture to remain a topic of continuous
consideration, to avoid architectural decay over time. Defining explicit
goals, for example, using Sigrid’s objectives dashboard helps to track
incremental progress while keeping the eventual long-term goal in view.

32

AI AND BIG DATA
SYSTEMS PLAGUED
BY POOR CODING

Rob van der Veer / Asma Oualmakran

333

Artificial Intelligence is on the rise, and therefore an
increasing part of the systems we see at SIG involve AI and
big data. We observe, in most cases, these systems suffer
severe quality issues, predominantly in maintainability and
testability. What does the SIG benchmark have to say about
this? What are typical quality issues of AI/big data systems,
what can organizations do to control them, and how can they
make AI a sustainable success?

Data analysis of our benchmark shows that AI/big data systems
are significantly less maintainable than other systems. 73% of AI/
big data systems score below the benchmark average. Their average
maintainability rating of 2.7 stars is significantly lower than the average
of other systems6. This is mostly caused by the quality properties Unit
Size and Unit Complexity. AI/big data systems are, on average, in the 5%
bottom of the industry regarding Unit Size (long blocks of code), and for
Unit Complexity in the bottom 25%.

Fortunately, there are also AI/big data systems with high maintainability,
as our benchmark clearly shows. This demonstrates that it is, thankfully,
not impossible to build maintainable AI/big data systems.

6 T-test rejected the null hypothesis that there is no significant difference between the maintainability of AI systems and general
 SIG benchmark.

[prompt] picture of a
white human-like robot
reading a book at a
table with a desk light
on

34

CHART-SCATTER-BUBBLE

Dataset
AI/big data systems
SIG Benchmark

Our dataset of AI/big data systems was compiled by selecting systems
that revolve around statistical analysis or machine learning, based on the
technologies used (e.g. R and Tensorflow) and documentation.

35

According to the SIG maintainability model, long and complex blocks of
code are hard to analyze, hard to modify, hard to reuse and hard to test.
The longer code blocks are, the more responsibilities they tend to cover,
and the more complex, the more decision paths there are. This explains
why it is harder, if not impossible to create tests that cover everything.
The testability problem is demonstrated by the dramatically small amount
of test code. In the typical AI/big data system, 1.5% of the code is test
code, whereas for the benchmark this is typically 43%.

Low maintainability makes it increasingly difficult to perform changes,
and the risk of introducing errors grows without the proper ability to
detect these errors. In other words: typical AI/big data code tends
to become a liability the longer it needs to be maintained. Over time,
data changes and requirements change, and because of lacking
maintainability, adaptations are bolted on - which reduces the probability
of error but adds to the maintainability problem.

Key Finding: In the typical AI/big data system,
1.5% of the code is test code, whereas the
benchmark is 43% test code.

LIGHTBULB-ON

Key Finding: On average, AI/big data systems
have significantly lower maintainability,
mostly caused by long and complex blocks of
code accompanied by a very low amount of test
code. The result is that AI/big data systems
tend to be difficult and costly to change, extend,
and integrate, with a high risk of making
mistakes. Furthermore, this can severely hinder
transferring AI/big data systems to another
team.

LIGHTBULB-ON

36

What could be causing these long and complex code units? Typically,
such issues are the result of unfocused code (having more than one
responsibility) and the lack of abstraction: useful pieces of code are not
isolated into separated units. Instead, they are copy-pasted in code.
Without exception, it is our experience that AI/big data code suffers from
these problems.

The lack of abstraction can be illustrated by the example below. The
purpose of this code is to select the most recent date plus to make the
dates valid. When looking at the code, it looks similar to SQL. We often
see this in the AI/big data field, as data scientists are accustomed to
SQL for processing data. It is typical for SQL code to lack abstractions
because developers are often unaware of the available language
abstraction mechanisms, making it very hard to read and understand the
purpose.

The above code snippet can be refactored in the below more abstracted
and readable code. Conditions of each parameter are abstracted into
the function MakeValidDate. This single improvement has a significant
impact on maintainability as repeated functionality is simplified,
centralized, and made testable.

GREATEST(IIF(ISNULL(i_RS_VLD_FM_DT),TO_DATE(v_
LOGC_RSVD_VAL_UNKNOWN, ‘YYYY-MM-DD HH24:MI:’),i_
RS_VLD_FM_DT),IIF(ISNULL(i_RS_VLD_FM_DT_fauit),
TO_DATE(v_LOGC_RSVD_VAL_UNKNOWN, ‘YYYY-MM-DD
HH24:MI:SS’), i_RS_VLD_FM_DT_fauit),IIF(ISNULL(i_
RS_VLD_FM_DT_xref_sol),TO_DATE(v_LOGC_RSVD_VAL_
UNKNOWN,‘YYYY-MM-DD HH24:MI:SS’),i_RS_VLD_FM_DT_
xref_sol))

Greatest (MakeValidDate(i_RS_VLD_FM_DT),
 MakeValidDate(i_RS_VLD_FM_DT_fauit),
 MakeValidDate(i_RS_VLD_FM_DT_xref_sol))

RECTANGLE-CODE

RECTANGLE-CODE

37

What could be the root cause for the AI/big data maintainability issues?

1. Lab programming: most of data science work is aimed at a single
experiment, to try things in one-shot, or solve an analytical problem
ad hoc - not with the intention to deliver something to go into
production for a long time per se. The problem is that once things
work, there is no real incentive for the data scientist to refactor and
improve code quality. After all, there are no tests, so changing code is
risking breaking it without noticing it.

2. Data science education programs typically focus more on data
science and less on software engineering best practices.

3. Traditionally, data science development tools lack the support for
software engineering best practices.

a. R and Jupyter notebooks for example are based on the
paradigm of a step by step one-shot approach, which is
suitable for experiments but not for maintainable software.

b. Some data science languages lack powerful abstraction
and testing mechanisms.

4. The SQL pattern is often the standard paradigm for data
preparation. This pattern comes down to working with datasets that
are joined and contain many consecutive operations on many fields at
the same time. In AI/big data this represents a large part of the work
(75-90%7), and it has its maintainability challenges - for which the
solutions are often unknown to data scientists. Data scientists find
this the least enjoyable part of the work8 and the most difficult9.

For AI/big data systems, we typically encounter teams with predominantly
data scientists. When working with them, we observe that they are
focused on creating working analytics and models while often lacking a
number of software engineering best practices, typically leading to the
issues that have been discussed.

Key Finding: Important causes for
maintainability issues in AI/big data systems
are code having multiple responsibilities and
the lack of abstractions.

LIGHTBULB-ON

7 (Microsoft 2019)
8 Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says”, Forbes, Gil press, March 2016
9 Biggest difficulty: “Software Engineering for Machine Learning: A Case Study”, 2019 IEEE/ACM 41st International Conference
 on Software Engineering: Software Engineering in Practice (ICSE- SEIP), Amershi et al. Microsoft

38

Part of the reason why unit testing is lacking in AI/big data systems is
that the engineers rely on integration tests, which can be done elegantly
for this type of system by measuring the correctness of the AI model.
If the model performs badly, this can be caused by some issue in the
pipeline. The problem with this approach is twofold:

1. Due to the lack of unit tests, it is not clear where an issue is
located.

2. The model can perform okay, but there may be an issue preventing
the model from performing much better.

For example, a model to predict sales of drinks uses the weather as input,
and let’s say it scores 80% correct. Suppose there is an issue causing
the temperature to always say zero - preventing the model to score 95%.
Without unit tests, this may never be found.

What are the SIG recommended practices to deal with AI/
big data systems?
First of all, by measuring and improving the maintainability of AI/big data
systems. Data science teams can then get immediate feedback on the
quality of their work. What also helps is mixing people coming from data
science with people from software engineering. This helps in two ways:

• Data scientists can be coached to write code in a more future-proof
and robust fashion, and they will happily embrace this once they see
how they benefit from it in their daily work.

• On the other hand, it is beneficial to have engineers that are new to
data science learn from the powerful paradigms and tools available
for big data and AI.

Key Finding: Maintainability issues in AI/big
data systems have a root cause in the way data
scientists tend to work, given their focus on
experiments, their education, their tools, and
the fact that data preparation is the dominant
part of their work.

LIGHTBULB-ON

39

[prompt] a visual of the problems
for engineers with AI from the view
of maintainability

40

VULNERABLE OPEN
SOURCE REMAINS
A WIDE-OPEN
BACKDOOR

Magiel Bruntink / Miroslav Zivkovic / Chushu Gao

Third-party open source components are present in virtually
all modern enterprise software systems. Moreso, the vast
majority of enterprise software runs on variations of Linux, an
open source operating system. It’s therefore no surprise that
recent calls for legislation by the United States presidency10
and the European Commission11 explicitly include the security
of third-party and open source components into scope.

4

[prompt] a photo image of a modern single back door of a modern house left open with a
view from the house into a modern city alley in the background all in night light

41

One of the most significant aspects of that legislation is that producers
of software on either side of the Atlantic will become accountable for
cybersecurity issues in their products. A burden previously borne mostly
by users. Producers will have to perform adequate due diligence for
vulnerabilities in open source components, among many other defects
that potentially compromise security. They will need to either comply with
accepted security standards or be held liable for damages, fines, or both.

Nowadays, SIG analyzes more than a hundred thousand dependencies on
open source components in enterprise software systems, every month. In
light of the upcoming legislative revolution, we can therefore provide an
urgently needed status update.

In last year’s Benchmark Report 202212, we already shared some insights
that were cause for alarm.

• Overall, enterprise software producers update their open source
dependencies after years, rather than weeks, of updates being
available.

• Even in the presence of critical security vulnerabilities, average patch
times reflected no urgency.

• We revealed correlations between the build quality of open source
code and the risk of vulnerabilities: worse code quality is linked to
higher risk.

One year on we revisited our core findings to provide a fresh view of the
state of affairs. Spoiler: we’re not yet where we need to be, not by a
longshot. There may be some recent hints of gradual improvements, but
it's more accurate to say that we are still in the middle of a vulnerability
pandemic.

10 National Cybersecurity Strategy https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
11 Cyber Resilience Act https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
12 SIG Benchmark Report 2022 https://www.softwareimprovementgroup.com/publications/2022-sig-benchmark-report/

Key Finding: 50 to 60% of enterprise software
systems have a vulnerable open source
dependency, each month. Around 30% have
a critically vulnerable dependency. Business
critical systems are only marginally less
exposed than less critical systems.

LIGHTBULB-ON

42

Let’s have a good look at our extended data and distill answers to the
following questions:

1. How many enterprise software systems have vulnerabilities in their
open source components? What sectors of the software industry do a
comparatively good job managing vulnerabilities?

2. Are there aspects of open source components that make some
relatively safer than others? How to use open source components
responsibly?

3. What should software-producing organizations do to prepare for
future legislative changes? How to turn the tide and manage the list
of vulnerabilities to zero?

1. More than 50% of enterprise software
systems use vulnerable open source

Using Sigrid® | Open Source Health, SIG helps clients monitor risks in the
open source usage of their enterprise software systems. Each month, the
dependencies of 1,000 or more systems are scanned for risks related to
security vulnerabilities, licensing, and out-of-datedness.

The following graph shows the overall percentage of systems that
are found to include a vulnerable open source dependency. As the
vulnerabilities are colored by severity, low (sand) to critical (red), it’s easy
to note that, on average, 30% of systems include a critical vulnerability
among their dependencies. We see a vulnerable dependency of any
severity for 50% to 60% of the systems monitored each month.

[prompt] a photo image of a modern single back door of
a modern house left open with a view from the house into
a modern city alley in the background all in night light

43

Business Critical system

s
Other systems

0%

20%

40%

60%

M
on

th
ly

 %
 w

ith
 c

rit
ic

al
 v

ul
ne

r

OVERALL TREND OF VULNERABLE ENTERPRISE SOFTWARE SYSTEMS
CHART-COLUMN

In short, the majority of enterprise software systems we monitor are
affected by these –potentially exploitable– security issues. Looking at
the data from the second half of 2022 slightly optimistically, a modest
downward trend of critical vulnerabilities can be seen.

Carving our data to highlight the class of systems that are deemed to be
Business Critical by their owners reveals the following trends:

Oct '21 Apr '22 Oct '22 Apr '23
0%

60%

CHART-GANTT

ab
ili

tie
s

0%

20%

40%

60%

Jul '21 Oct '21 Jan '22 Apr '2 ul '22 Oct '22 Jan '23

M
on

th
ly

 v
ul

ne
ra

bl
e

sy
st

em
s

%

Severity
Low
Medium
High
Critical

J2

BUSINESS CRITICAL SYSTEMS ARE ONLY MARGINALLY LESS
EXPOSED TO CRITICAL VULNERABILITIES

44

It appears that marking systems as business critical, for example,
enterprise architects or higher management has no significant impact
on the exposure to critical vulnerabilities. In our data, we observe much
the same rates of critical vulnerabilities across the years 2021 and 2022
for the business critical and the less critical systems. It seems there is
a significant disconnect between the business owners and the technical
owners: a gap that is urgently asking to be bridged.

The usage of open source libraries is most common for modern
programming technologies. In most cases, a modern language is
embedded in sprawling ecosystems of libraries and tools that provide
substantial benefits to productivity and developer well-being. At the same
time, libraries from these ecosystems can pose risks, as build quality is
not up to standards, new ways to exploit old software are continuously
discovered, or human errors remain undetected during development.

Below we list the top 10 most seen dependencies that had a critical
vulnerability in 2022. These are popular libraries that enjoy a lot of
attention among developers and hackers alike. If vulnerabilities become
known in these libraries, teams do well to update to safer versions on
short notice.

Critically vulnerable
dependencies

Language ecosystems % systems
that used

1. FasterXML Jackson Java Maven 9.9%
2. Spring Framework

(SpringShell)
Java Maven 9.8%

3. OWASP HTML Sanitizer Java Maven 7.8%
4. Spring Framework Java Maven 7.8%

5. Log4net .NET NuGet 7.4%
6. Log4j 1.2 Java Maven 7.0%
7. .NET Core .NET NuGet 6.7%
8. Commons Text Java Jar 5.6%
9. PDFBox Java Jar 5.1%
10. PostgreSQL Java Maven 4.6%

LIST

45

The top 10 list for 2022 indeed features exclusively the common modern
programming technologies in enterprise software, Java and .NET. The
XML handling library Jackson is one of the most used libraries in Java
and at the same time the one for which the most vulnerabilities have
been reported in previous years. Close to 10% of systems we analyzed in
2022 used a critically vulnerable version of Jackson. A very close second
is the popular Spring Framework, with an exploit known as SpringShell
(following the naming of the late 2021 Log4Shell incident).

Why should you care? Check Point Research reported a staggering
weekly average of 1,200 cybersecurity attacks per organization worldwide
in 2022, an increase of 38% from 202113. The majority of supply chain
security attacks (66% as reported by ENISA, the European Union Agency
for Cybersecurity14) are vectored in through third-party software. So,
plenty of reasons to tighten up the handling of vulnerable open source
dependencies.

Our top 10 list consists of vulnerable libraries that are commonly used
directly, or sometimes in an indirect and less visible way. In those cases,
a vulnerable library is only used through another library that is directly
and visibly used with a code base. In particular, the logging libraries
are commonly pulled in without much fanfare and with a risk of causing
unknown vulnerability to exploits.

Another finding is that some commonly vulnerable Java libraries are
used as an unmanaged Jar; a bad practice from several angles. In those
cases, the library code itself is distributed inside the code base of a
software system, without the use of a package management tool. Such
libraries are generally updated slower and hence vulnerable for longer
than properly managed libraries15.

The SIG recommended practice is to urgently check for vulnerable
versions of our top 10 critically vulnerable libraries. This requires looking
at both the directly used open source packages and those used indirectly.
Further, implement our recommended practices to get in control of
vulnerable open source. Those are discussed in detail in the third section
of this chapter.

14 https://blog.checkpoint.com/2023/01/05/38-increase-in-2022-global-cyberattacks/
15 https://www.enisa.europa.eu/news/enisa-news/understanding-the-increase-in-supply-chain-security-attacks
16 As shown in our Benchmark Report 2022, page 23

46

Low

Medium

High

Critical

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

2. Reduce risk in open source usage by
addressing build quality

Open source ecosystem hosting vendors such as SonaType provide yearly
updates on the state of their managed ecosystems. Over 2022, they
reported that 14% of downloaded libraries were vulnerable. Often that’s
because the downloaded version was outdated and, while known to be
vulnerable, was still available for download. Also, they report that 6 out
of 7 vulnerable libraries are downloaded as indirect dependencies.

Turning to our data, we observe an overall more positive picture. The
following graph shows the percentage of vulnerable libraries used in
enterprise software observed by SIG. The good news is that the overall
rate is well below the SonaType-reported 14%, in particular for the
critically severe ones (at just 1-2%). So, the enterprise software systems
we observe with Sigrid are using fewer vulnerable versions than the
general software public.

CHART-GANTT
VULNERABLE LIBRARIES ACROSS THE ENTERPRISE SOFTWARE
INDUSTRY
Based on 106K dependencies seen in 2022

47

However, the bad news is that typical enterprise software systems still
use hundreds of libraries, either directly or indirectly. So even a small
percentage of vulnerable libraries increases the risk of security issues in
enterprise software systems.

In last year’s Benchmark Report, we showed a clear correlation between
the risk that a library has vulnerable versions and its build quality. To
further corroborate that result, we extended our dataset with a factor of
5 by including both more Java Maven libraries and also Python libraries
from the PyPI ecosystem. In total we are now reporting on approximately
10,000 libraries: again we see a clear higher risk related to having lower
maintainable code. High code maintainability is a major underpinning
factor to overall build quality, facilitating the code to be understood,
changed, tested, and reused.

In the graph below we show the risk of a library being vulnerable at
each build quality level, relative to the recommended level of 4-star SIG
maintainability16. Clearly, libraries of higher, 5-star quality show less than
half of the risk, while 3- and 2-star maintainability have up to two times
higher risk levels17.

16 https://www.softwareimprovementgroup.com/software-analysis/
17 Libraries of 1-star Maintainability are not yet available in the dataset

RELATIVE VULNERABILITY RISK COMPARED TO RECOMMENDED
BUILD QUALITY (4 STARS)

n = 3060n = 240 n = 2900 n = 480
0%

100%

200%

300%

HHIII HHHII HHHHI HHHHH

Maintainability

Ri
sk

 o
f

vu
ln

er
ab

ili
tie

s
re

la
tiv

e
to

 4
 s

ta
rs

CHART-COLUMN

48

75%

50%

25%

0%

0 100 200 300 400 500
Days since a dependency is introduced

Pe
rc

en
ta

ge
 o

f
de

pe
nd

en
ci

es
 u

pd
at

ed

The SIG Maintainability measurement is often correlated with other best
software development practices. To name just a few core practices:
automated unit testing, modern (security) code review, and the use of
automated tools for continuous integration and deployment. One reason
for the correlation is that such best practices are hard or impossible to
implement in code bases of low quality. Such code bases resist being
understood, tested, and changed.

Teams that manage to maintain high levels of maintainability implement
such best practices and therefore reap other benefits of quality as well,
including lower defect rates and shorter fix times. Among such benefits is
a reduced time to update open source libraries. Let’s have a look at our
maintainability measurement data for 3,500 enterprise software systems
and their 326K open source dependencies.

Key Finding: Compared to recommended
4-star Maintainability, 2-star Java and Python
libraries have 2x more risk of having vulnerable
versions. At the same time, exceptional quality
5-star libraries show only a quarter of the risk.

LIGHTBULB-ON

TIME-TO-UPDATE VERSUS MAINTAINABILITY
Tracking 326K dependencies from 18 ecosystems in 3500 client
systems

CHART-GANTT

Client system maintainability HHIII HHHII HHHHI HHHHH

49

In the plot on the page before, we show longitudinal data for the time-to-
update in days since a dependency was introduced. In short, the higher
the graph, the quicker dependencies were updated to newer versions.
It’s clear to see that 5- and 4-star code wins the race, while 3-star
code lags behind and never really catches up. 2-star code is often older
and generally uses a stagnant set of libraries. Given that the libraries
themselves tend to evolve quickly, and vulnerabilities are discovered at an
increasing pace, stagnation of update speed is a genuine concern.

3. Closing the door on vulnerable open
source dependencies

Let’s review our thoughts and general recommendations to move toward
secure and accountable development. The governing bodies of the United
States and the European Union are preparing to introduce far-reaching
legislation regarding cybersecurity. The software-producing industry will
need to respond by adhering to unprecedented standards, with matching
fines or liability claims for failure.

There are three main action areas to address:

1. Establish a duty of care based on current security standards.
Increase transparency on software products by providing SBOMs,
plus threat and mitigation analysis.

2. Implement practices to get in control of vulnerable open source.
Review our list of 9 open source usage practices and implement the
missing ones in daily development practice.

3. Review SIG R&D on a novel requirements-driven approach in secure
development. Get in touch with us on the SCRAMBLE project, where
SIG is creating secure code review innovations.

[prompt] future fit software
environment sport setting
outside blue colored racetrack
with a feeling of a modern
office environment colors with
people running

50

[prompt] picture of
great software design
showing from inside a
computer

51

Establish a duty of care based on current security standards
In order for the software industry to prevent countless lawsuits and fines,
it is time to start taking responsibility by building security in from the start.
Many organizations are working on this but struggle for different reasons,
including that there is no clear and shared duty of care in the industry.
When is software secure enough?

One challenge we face in answering this is the complex and fragmented
landscape of security standards. Standard makers such as the ISO see this
and seek ways to harmonize. SIG is determined to help make this happen,
for a large part by building on SIG’s proven ISO/IEC 25010 software
security model and supporting harmonization efforts. For example, we
donated our model to the OpenCRE18 open source initiative to link security
standards together in a uniform framework.

While legislation is being drafted and discussed by lawmakers and industry
representatives, the question arises of what software producers should be
doing today. Should every software product be subjected to certification
under the existing Common Criteria19 or the forthcoming EUCC20 model? For
critical products, there are good arguments to warrant the cost of such
certification processes.

However, for the vast majority of software products that burden of
certification may be prohibitive. What are more pragmatic approaches that
the regular software producer could adopt? Providing transparency would
be a key practice that could perhaps alleviate the need for innovation-
stifling legal requirements. Indeed, software-bills-of-material (SBOM) are
becoming commonplace in the software industry, but those are not enough.

SIG is making efforts to urge the software industry to action. For this,
the right incentives could be provided by the right legislation. However,
requiring software makers to adhere to strict security standards could
reduce the freedom to innovate. Instead, we would like to see that the
industry can showcase how secure their product is so that buyers can
decide. The responsibility of ensuring secure software is then moved to the
buyers provided that the software producers have done their job regarding
assurance.

If software producers would complete their products with a transparent
security analysis, buyers would be able to better inform their decisions
to acquire and implement. In our view, next to an SBOM, there should be
a clear analysis of the threat model and applied mitigations, in addition
to the secure development practices employed. With that information, a
producer clearly defines its scope of accountability, while a software buyer
would be better positioned to take responsibility for secure implementation.

18 https://www.opencre.org/
19 https://www.commoncriteriaportal.org/
20 https://www.enisa.europa.eu/publications/cybersecurity-certification-eucc-candidate-scheme

52

As an example of an effective security prescription, we would like to
point out The Update Framework (TUF)’s threat analysis21. By providing
transparency on the perceived threats and implemented mitigations,
together with external audit reports, the users of TUF can implement the
product more securely within their own scope of responsibility.

Implement practices to get in control of software security
issues in general
In addition to legislative compliance and implementing duty of care,
there are several smaller steps to take that will help stem the tide. The
following are some practical and recommended directions to get in control
of open source vulnerabilities:

1. Implement continuously up-to-date Software Bills of Material
(SBOM) across the entire software portfolio. This can be achieved by
automated software composition analysis tooling.

2. Define or refresh dependency version update policies to prevent
unmitigated use of stale and vulnerable dependencies. Such
policies should have a clear timeframe for addressing vulnerable
dependencies, make clear what mitigation steps are acceptable,
and allocate responsibility. Embed these policies into the software
development lifecycle with automated tools.

3. Review actual in-use dependencies by considering whether they are
essential for operations or largely redundant, reducing attack surface
as much as possible. In-use vulnerable dependencies should be
brought in line with policies as soon as possible.

4. Identify any dependencies with low build quality and reconsider if
they are worth the higher risk of future vulnerabilities. Prioritize the
replacement of dependencies that are no longer maintained actively
or have a very small group of users.

5. Ensure that the build quality of your own software portfolio is up to
standards (4-stars) to facilitate development best practices, including
testing, and to enable fast dependency update policies.

6. Provide standard building blocks and frameworks to teams in order
to take care of many of the security requirements.

21 https://theupdateframework.io/security/

53

7. Instruct teams on security requirements with a combination of
training, coding guidelines, and continuous knowledge exchange. To
deal with a large number of requirements, it is essential to implement
a process to attach the relevant instructions and verifications to
individual tasks (e.g. stories22).

8. Perform automated static and dynamic security verification
throughout the software development life cycle on all produced code
to find potential weaknesses before they become exploitable. In best
practice, tools of different classes (SAST, DAST, SCA, and IAST) are
combined into an automated security analysis suite.

9. Because automated tools have inherent blind spots. Introduce tool-
supported security code review for critical systems that address
security-by-design, common weaknesses in code, mitigation
strategies, and unsafe usage of APIs or dependencies.

22 https://owaspsamm.org/guidance/agile/

[prompt] a photographic
image of a poorly
constructed building
showing locks at doors

54

S C R A M B L E
Smart Code Review Assistance Module

Blending Leading Expertise

Hotspot
detection

Correlated
SAST/ DAST

findings

Machine
learning from

expert
decisions

Expert
review tactics

knowledge

Context
based

verification
guidance

Threat
weakness
mitigation
taxonomy

IMAGE

Project SCRAMBLE takes place at SIG under a one-year government-
funded program until July 2023, in collaboration with Radboud University
and Netherlands Organisation for Applied Scientific Research (TNO).

PROJECT HIGHLIGHT

[prompt] visual of the
concept of scramble in the
programming of digital
solutions in the style of an
old painting

55

Apply a requirement-driven approach to security
Regulations and the duty of care require organizations to build in
security, based on standards. In order to do this, the functional and
non-functional requirements in these standards need to be the basis
of the work of developers and testers. Applying security requirements
effectively is currently an unsolved problem - especially in agile software
development. How can the large and complex set of requirements be
provided in such a way that developers can apply them effectively, and
how can the verification work for these requirements be done efficiently,
given that only part of the testing work can be automated?

To help apply a requirement-driven approach, SIG is developing a unique
intelligent platform under the working title SCRAMBLE. This platform
provides instructions to teams for writing secure code and performing the
right verifications. This verification step includes manual code review since
many types of security flaws cannot be found by tools alone. The problem
is that expertise in secure code review is scarce, while the work is very
time-consuming.

SCRAMBLE addresses these issues by using AI to harness methodology
and world-leading review expertise at SIG. An expert system guides
reviewers in performing verifications, while a machine learning model
provides recommendations regarding places to look in the code, and how
to make decisions. At SIG, we believe that AI-assisted developers and
testers are the future.

The current prototype is already being used in client assignments and has
led to a substantial increase in efficiency, quality of work, consistency,
and availability to a larger group of experts - users at SIG, but we are
also taking steps to involve users at clients and partners.

SCRAMBLE represents the top-down approach to software security
and addresses the unsolved problem of effectively managing security
requirements in the software lifecycle. SCRAMBLE manages these
requirements as instructions to engineering teams and assures their
verification:
• by SAST, DAST, SCA, and IAST tools,
• by fuzzing tools,
• and by manual review.

This builds on the idea that we also promote through our Sigrid platform:
allowing organizations to apply an approach in the business context:
a risk-driven and cost-based way of dealing with security, instead of the
bottom-up approach of having to deal with thousands of tool findings
that need to be fixed.

56

FIRST DIGITAL
SKILLS BENCHMARK
SHOWS POOR JOB
ALIGNMENT

At the end of 2022, Astride began, and since then, over 5,500
people in over 180 countries have taken their Digital Skills
Assessment which has provided professionals with insight into
how they relate to their current and potential future job roles
and has provided us with a unique view on global digital skills
across industries. Our major finding is that we clearly see that
digital skills are very poorly met. The average skill gap for the
vast majority of roles is more than 50%. There is significant
room for upskilling, to put it mildly.

Wouter Knigge / Edward Song / Magiel Bruntink / Xander Schrijen

5
[prompt] a photo-realistic picture of a happy casual man with eight arms and hands with
digital devices in it

57

1. Job market alert: a desperate need for
digital skills

We are in an era of constant disruption, and the IT and Software industry
is leading the charge. Over the past three decades, technological
advancements have significantly accelerated, reshaping the ways
we communicate and connect. Consider the smartphone revolution,
which transformed and mobilized our means of communication. This
phenomenon is not an isolated incident. Disruptive leaps in technology,
such as the robotization of the manufacturing sector, have consistently
replaced earlier methods at an ever-increasing pace.

However, is the workforce keeping up? Over the past decade, discussions
surrounding the "Talent Shortage" in IT have persisted. The rate of
change does not correspond with the number of skilled professionals
entering the job market. For example, the software engineering industry's
shortage of technical personnel is growing at an alarming rate, with
the security niche leading the pack23. Moreover, the existing workforce
requires continuous upskilling to remain competitive and relevant.

Demographic data indicate that waiting for new graduates (university/
college/tech programs) will not solve this problem24. Instead, there is
a pressing need (and opportunity) to repurpose the existing global
workforce to address these demands. The crucial question remains: how
do we initiate this process?

This chapter explores the dataset we have accumulated with Astride
over six months and with more than 5,500 participants. Our benchmark
analysis will cover the following key points:

• Employer’s perspective: are people equipped for the jobs they are
currently in? No, on average, there is a high skill gap for practitioners
in their current jobs, with only a few exceptions.

• Candidate’s perspective: what jobs are easy to get into, and which
have good follow-up opportunities? The data show plenty of job entry
opportunities for the Astride participants, in particular for those with
specialized and demanding jobs.

23 https://www.forrester.com/report/the-security-skills-shortage-takes-its-toll-on-organizations/RES178724
24 https://gaper.io/tech-talent-shortage/

58

2. Astride – The digital skills compass for
tomorrow’s learning journey

Achieving equilibrium in the digital skills marketplace necessitates aligning
supply and demand. Both candidates and employers require insight into
their respective positions and potential actions:

• Candidates – need to understand their skill levels, alignment with
specific job profiles, and the areas requiring further development.

• Employers - must evaluate their current workforce's skill coverage,
team/departmental balance, and the external skills they must shop
the job market for.

With nearly 40 years of experience creating competency and skills-
based certifications, EXIN is ideally positioned to provide such insights.
EXIN has developed Astride, a self-assessment portal based on an
internationally recognized scientific competency framework that connects
121 competencies to 31 job profiles in the digital skills market (the e-CF)25.

Astride26 enables candidates to self-assess their competencies in six
areas. Each participant provides their country of origin, current job role,
and industry. Candidates can opt to skip competency areas if they lack
relevant experience. The assessment generates 250+ weighted data
points applied to specific competencies.

After completing the assessment, Astride generates a Custom Insights
Report for each candidate, including the summary below. A candidate's
compatibility with a job role is represented by the scores on up to
10 selected competencies, which are averaged to produce a single
percentage.

25 https://esco.ec.europa.eu/en/about-esco/escopedia/escopedia/european-e-competence-framework-e-cf
26 https://www.exin.com/astride-by-exin/

27%
Chief

information
officer (CIO)

64%
Data

scientist

63%
Project

manager

71%
Solution
designer

64%
ICT

operations
manager

60%
Digital

educator

YOUR CURRENT
JOB ROLE

BEST MATCH SECOND THIRD FOURTH FIFTH

IMAGE

59

3. Insights from the Astride Benchmark on
the current job market

Drawing from the anonymized self-assessment data, we can examine
the current trends in the global job market. In addition to the skill
assessments, EXIN collects information on participants' country of
residence and industry, allowing for contextual analysis. Hence, our
dataset can be utilized to combine findings into insights, as represented
below.

This Benchmark Report provides a few key findings out of a deeper
analysis that will soon become available as an EXIN whitepaper. Stay
tuned on EXIN’s LinkedIn27 for an update on that.

27 https://www.linkedin.com/school/exin/

Key Finding: 5,500 IT practitioners from across
the globe have used Astride so far.
• 180 out of 195 countries are represented,
• Most common industry is IT / Software,

but many more specific industries are
represented,

• Most respondents indicated “Project
Manager” as their job role.

LIGHTBULB-ON

60

Employer’s perspective: poor alignment between jobs and
digital skills

Astride assesses to what extent participants have the skill they need
for their current and future jobs. With the data collected on 5,500
assessments, let’s see how well job roles are currently filled with people
that have the right skills. As the next analysis shows, the overall picture is
not so rosy, indeed.

For each job role assessed, the graph shows the average Astride score
(dark blue line) inside the middle 50% scores (gray box). The maximum
Astride score a participant can get for their current job is 80 points. While
there are no doubt skilled individuals in all of the assessed jobs, this
analysis focuses on the average cases to allow organizations to reflect on
recruitment, training, and retainment policy.

Key Finding: Except for people in the jobs of
Digital transformation leader and Information
security manager, the average Astride score for
job roles shows a skill gap of at least 50%. The
average Developer has a 75% gap with having
all skills for the job.

LIGHTBULB-ON

IMAGE

61

Looking at the graph, it’s obvious that people in most job roles score far
below 40 points on average, implying a skill gap of higher than 50%. The
only exceptions are people in the jobs of Digital transformation leader
and Information security manager. The average Developer even has a
75% gap with having all skills for the job, with an average Astride score
of about 20.

The Astride data reveal that the top-3 missing skills for Developers are
the following:
1. Component Integration (level 2),
2. Testing (level 2),
3. Documentation Production (level 3).

These findings should be of concern to IT organizations. Apparently, many
people are only marginally skilled for the jobs they are currently active
in. Either they expect to be trained on the job, or they expect to move on
quickly to other jobs that are more suitable to their skill sets.

CHART-GANTT
AVERAGE ASTRIDE JOB-SKILL MATCH SCORE

62

For organizations, the priority should be to identify what skills are
most often lacking, given the organization’s specific profile of job roles.
Then, revisit training, recruitment, and retainment policies, to gradually
decrease skill gaps.

Job candidate’s perspective: job entry and follow-up
opportunities

The days of any one individual staying in the same role for many years
are gone. From individuals to corporate employers and government
agencies, job market mobility is essential28.

• From an individual standpoint, growth prospects are a significant
factor in job mobility. As employees develop skills over time, career
opportunities and salary growth become available, allowing for
variation in the different activities throughout their careers.

• For employers, mobility enables organic employee growth within the
company, utilizing skills and knowledge acquired over time. High
job mobility in the market also ensures the availability of attractive
candidates for new positions.

Astride assesses what skills people currently possess and what the
requirements for each job are. The data can also tell whether the people
in each job have skills that also apply to other jobs. For instance, if you
are in a data science role but have more development skills than the
average developer, then a developer role could be a good follow-up
opportunity. The next graph reflects the overall job mobility picture that
follows from the Astride data:

• People in Enterprise Architect and Digital Transformation leader jobs

are the most densely skilled: on average, they are out-skilling people
in most other jobs. At the same time, this makes their jobs harder to
enter for others and provides them with many options for the next
job. Enterprise Architects in general did not show a great skill match
in the previous analysis due to the job demanding a greater skill set
than others.

• At the other end of the spectrum, there are plenty of jobs that are
relatively easy to get into for most respondents. For instance, the
average skill sets for Service support and Data administrator jobs are
exceeded quite easily, allowing candidates a starting position.

28 https://www.gartner.com/en/newsroom/press-releases/2020-02-27-gartner-says-hr-leaders-must-build-a-robust-strategy-

63

Of course, the growth path of an individual candidate can be different.
The Astride benchmark data reflects the average skills in each job, giving
professionals options for further growth. Candidates should ensure
that they find jobs that grow their skill sets and find organizations that
provide them with the necessary training.

Key Finding: Enterprise Architect and Digital
Transformation leader jobs are the most
densely skilled: on average, they are
out-skilling people in most other jobs.

LIGHTBULB-ON

CHART-GANTT
JOB MOBILITY OPPORTUNITIES BASED ON ASTRIDE SKILL DATA

64

[prompt] a copyright sign
in the sky in a cloud of
binary code in Vermeer
style

65

FINAL THOUGHTS
Now that we are at the end of our fifth SIG Benchmark Report, it is clear
that the digital world needs to get its act into gear, everybody. The issues
we revealed are major issues requiring a concerted effort to resolve.

There is a lot more underlying data we can share to build your own
specific case, and we are more than happy to assist.

In our report, we shared the most important findings. There is something
for everybody to act upon. Whether it is to upskill you or your team's
digital skills, make the promise of low-code work, or ensure that your
great AI project is not becoming a legacy nightmare. Or, how you can
make sure open source is not the open door it seems to be: in fact, today
it’s a whole warehouse of open doors, so big that it's scary.

A lot is happening in the digital world, not in the least by generative AI
solutions that are getting impressively strong. Of course, this will be of
great help, but it will also create new challenges. For one, is the code
that is being generated not an (unintentional) copyright infringement
of a previously created piece of software? And you still need to tell
the generative AI what you want to have. The specification in natural
language is not necessarily without its challenges, as everybody
knows who has ever been in a conversation and was not immediately
understood (if you don’t recognize this, that is even scarier).

So, the digital world is progressing fast, a lot is happening, and there is
still a lot to be fixed.

In this report, we gave you the guidelines to focus your short-term efforts
and drive your long-term plans. Let us know where we can help with our
data, insights, and technology.

We’re at the end of the report with nothing more to read but all the more
to do!

Thanks for your attention and focus. We loved writing this and hope you
enjoyed reading it, and most importantly, we hope it is of value to you.

On behalf of the entire team of authors,

Luc Brandts and Magiel Bruntink

Luc Brandts

66

GETTING
SOFTWARE
RIGHT FOR
A HEALTHIER
DIGITAL WORLD

[prompt] a photo-realistic
picture in a happy setting of
a smiling little girl dressed
as a hip programmer
working on a laptop in fresh
colors

67

About Software Improvement Group

Software Improvement Group (SIG) helps organizations trust the
technology they depend on. We’ve made it our mission to get software
right for a healthier digital world by combining our intelligent technology
with our human expertise to dig deep into the build quality of enterprise
software and architecture - measuring, monitoring, and benchmarking it
against the world’s largest software analysis database.

With SIG software assurance, organizations can surface the factors
driving software total cost of ownership and make fact-based decisions
to cut costs, reduce risk, speed time to market, and accelerate digital
transformation.

Software Improvement Group is the first fully certified laboratory in the
world to measure against the ISO 25010 standard. We make this lab
accessible to our clients through our SaaS software assurance platform –
Sigrid® – which enables them to take a risk-based approach to improving
the health of their IT landscapes.

We serve clients spanning the globe in every industry, including DHL,
Philips, ING, KLM, BTPN, Weltbild, KPN, as well as leading European
governmental organizations.

SIG was founded in 2000 as an independent technology company with
embedded consulting services. SIG is headquartered in Amsterdam, with
offices in New York, Copenhagen, Antwerp and Frankfurt.

Learn more at www.softwareimprovementgroup.com.

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

www.softwareimprovementgroup.com

marketing@softwareimprovementgroup.com

GETTING
SOFTWARE
RIGHT FOR
A HEALTHIER
DIGITAL WORLD

68

COLOFON
SIG Benchmark Report | 2023
Enterprise software through the SIG looking glass

Authors
• Asma Oualmakran, SIG
• Benedetta Lavarone, SIG
• Chushu Gao, SIG
• Dennis Bijlsma, SIG
• Edward Song, EXIN
• Lodewijk Bergmans, SIG
• Luc Brandts, SIG
• Magiel Bruntink, SIG
• Miroslav Zivkovic, SIG
• Pepijn van de Kamp, SIG
• Rob van der Veer, SIG
• Xander Schrijen, SIG
• Wouter Knigge, EXIN

©2023 Software Improvement Group. All rights reserved. No part of this book
may be reproduced or used in any manner without the prior written permission of
the copyright owner, except for the use of brief quotations in a book review.

Design: Plushommes.com - Martijn Meerman
All illustrations are made with the help of AI (Midjourney)

Legal Notice
This document may be part of a written agreement between Software
Improvement Group (SIG) and its customer, in which case the terms and
conditions of that agreement apply hereto. In the event that this document was
provided by SIG without any reference to a written agreement with SIG, to the
maximum extent permitted by applicable law this document and its contents are
provided as general information ‘as-is’ only, which may not be accurate, correct
and/or complete and SIG shall not be responsible for any damage or loss of any
nature related thereto.

70

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

