

SIG ARCHITECTURE QUALITY MODEL

Guidance for Producers

April 5, 2023

SIG Architecture Quality Model 1 / 18

Authors

Dennis Bijlsma
Head of Product
d.bijlsma@sig.eu

Michael Olivari
Senior Product Owner
m.olivari@sig.eu

SIG Architecture Quality Model 2 / 18

1. INTRODUCTION

The ability for a company’s IT solutions to adapt and grow with changing business needs continues to be a point of
contention within the software industry. At an increasing rate, we see IT managers being challenged with
modernizing and/or evolving large portions of their software landscape due to new business initiatives due to
significant events (such as an acquisition of new IP) or production issues due to dependence on legacy software.

These organizations often lack the insights with respect to how their applications communicate with one another
and it is unclear where knowledge over the system resides within the development team. Dependencies across the
fundamental parts of the system are often hidden from view, resulting in any one change often creating a cascade
of complications that need to be addressed with any new development. These complications significantly delay the
time to market for a given line of business and costs begin to snowball quickly. As a result of this architectural
brittleness, organizations are often hesitant to make foundational changes without insight into these aspects. This
is where SIG comes in.

In the past, SIG utilized the TÜViT Maintainability Model to assess the architecture of a system developed by a
single team. Component level metrics were defined to give insights into how a system is structured in its basic
parts, how these parts communicate statically, and what anti-patterns in communication may be present. While
these software aspects work well in the limited scope of a single system, it does not go far enough in providing
insights into how a cluster of systems interact together. SIG’s Architecture Quality Model has been developed to
measure the degree to which an organization’s implemented software architecture within a line of business, often
consisting of a collection of software systems/applications, is designed with evolution in mind.

SIG Architecture Quality Model 3 / 18

2. MODEL DEFINITION

SIG defines architecture quality as the degree to which an architecture is flexible and adaptable to change. The
basic idea comes down to modularity within an architecture - specifically how well are systems in the landscape
defined via components and the degree to which these components can easily be worked on in isolation or
swapped out with new functionality. Ideally, components are encapsulated to a high degree and map to a specific
business responsibility or technical boundary defined by the line of business.

Currently, there is no standardized approach in the industry to measuring architectural flexibility for this context.
However, due to SIG’s extensive experience and expert domain knowledge, we have been able to derive 6 sub-
characteristics of software architecture that can easily be assessed from specific measures on source code:

Figure 1 Architecture aspects in the SIG Architecture Quality Model

The architecture aspects used in the model use the following definitions:

■ Structure

Definition: The arrangement of and relations between the parts or elements of an architecture.
Unlike modern systems with microservices or service-oriented architectures, legacy systems typically lack clear
boundaries between functional and technical areas. The extreme example is a huge monolith with various
problem areas in one big box. This makes it difficult to navigate issues, distribute maintenance effort, and
extend functionality.

■ Communication

Definition: The complexity of imparting or exchanging of data throughout the architecture.
A common issue for legacy systems is “spaghetti code,” where dependencies are too intertwined to analyze
and understand the functional logic mapped to code. The result is then that no one dares to touch any piece of
code, as any change could lead to issues in production.

■ Data Access

Definition: Ease and efficiency of accessing or retrieving data stored within a database or other repository.
There’s usually only one big database for multiple functional areas of a legacy system. When many parts of a
system depend on a single database, modifications to the data structure will very likely result in a cascading
effect of modifications across the areas that rely on it, making the database schema for a legacy system too
rigid for change.

SIG Architecture Quality Model 4 / 18

■ Technology Stack

Definition: Degree to which technologies are common and standardized across the architecture.
Technology is usually the first thing selected for a system. Therefore, legacy systems always contain older or
obsolete technologies, which are often more difficult for developers to work with. Obsolete technologies are
typical impediments for development productivity, as there is little knowledge or tools available in the market
as for modern technologies. Even worse, old technologies themselves become unsupported over time, which
can expose big risks for business continuity.

■ Evolution

Definition: Degree to which changes can be made in isolation across the architecture.
In legacy systems, it’s difficult to make a change in one area without affecting another, making it difficult for
multiple teams to work independently. This co-evolving behavior should be avoided, as not being able to
isolate change is one of the biggest obstacles for development productivity.

■ Knowledge

Definition: Degree of technical knowledge distribution among team member within the organization.
In working with our clients, we see a great deal of large legacy systems highly dependent on just one or two
key developers. This means huge risks for business continuity; if these key developers leave or retire, sufficient
knowledge of the systems will cease to exist.

2.1 MAPPING ARCHITECTURE ASPECTS TO SYSTEM PROPERTIES

As the system is developed, understanding how code is structured, coupled, and evolving, gives insights into which
areas of the codebase are most flexible and resilient to change versus those that will create the most headache for
development when adapting the software. To this effect, SIG has defined 10 system properties that are easily
measured from source code and version control data to evaluate each of the 6 sub-characteristics of architecture
quality.

Figure 2 Mapping system properties to architecture aspects

With this model, it is possible to assess each sub-characteristic for every component level within a collection of
related systems inside an organization’s IT landscape, from lowest subcomponent-level upwards to system-level,
with an overall valuation of the architecture quality for the collection itself. Effectively, this means that every

SIG Architecture Quality Model 5 / 18

component will receive a quality score for each sub-characteristic of architecture so that it is easy to pinpoint
areas of inflexibility within an architecture simply by drilling down or up through components.

2.2 AGGREGATION

Calculating an overall score for architecture quality is done via aggregation over the quality scores for each sub-
characteristic.

For example, suppose a system consists of 2 components, Component A and Component B, we first measure and
evaluate the quality profile for each sub-characteristic of Component A and then do the same for Component B.
We then measure the sub-characteristics on the parent component, in this case the system itself, to determine its
external quality profile.

Averaging the sub-characteristic scores for both Component A and Component B based on the percentage of
volume each component makes up for their parent component, we then can calculate an internal risk profile for
the system. Together, we simply average the sub-characteristic ratings for the external quality and internal quality
profiles to come to an overall quality profile for the parent component. This process is repeated at all levels across
the collection of systems to arrive at an overall score for the landscape itself.

SIG Architecture Quality Model 6 / 18

3. SYSTEM PROPERTY DEFINITIONS

The following section details the individual metrics utilized in the SIG Architecture Quality Model. The motivation,
approach and specific design decisions are detailed, along with any future work that may be considered in
following revisions of the model.

For each system property, the following information is provided:
■ A description of the metric.
■ A conceptual example.
■ The measurement level: The type of system level for which the metric can be applied.
■ The unit of measurement: Defines the actual measurement that is performed, and describes the unit for the

(numerical) measurement result.
■ Metric order: Indicates how the measurement results should be interpreted.
■ Some typical architectural questions the metric can help to address.

3.1 CODE BREAKDOWN

The metric Code Breakdown describes the level of modularization in the codebase, or more concretely it is the
extent to which the codebase has been split into code components.

When the degree of componentization of the codebase is low, code components are large and difficult to
maintain. This means these components are harder to understand, harder to distribute over teams, and harder to
reuse or replace. When a code component is large, it is usually implementing multiple and often diverse
functionalities, so splitting the component in multiple components should be considered.

Metric information
■ Measurement level: Component
■ Unit of measurement: Lines of code for files in the component, where those files are not located within one of

the component’s subcomponents.
■ Order: Lower is better

SIG Architecture Quality Model 7 / 18

Related questions
■ Are there components that are significantly larger / smaller in volume relative to other components?
■ Are there subcomponents that are significantly larger / smaller in volume relative to other subcomponents

within a selected parent component?

3.2 COMPONENT COUPLING

Component Coupling measures the degree to which components are depended on and depend on other
components that make up a system. Components that must be modified together due to explicit dependencies are
considered coupled components.

A component with a high degree of external dependencies to and from many other components is more difficult
to maintain in isolation. The ability of this component to evolve is limited as a change in its interface would likely
cause a cascading effect of many additional changes across other components that comprise the system or
landscape.

Metric information
■ Measurement level: Component
■ Unit of measurement: The sum of all incoming and outgoing dependencies involving the component. Internal

dependencies between the component’s subcomponents are not included.
■ Order: Lower is better

Related questions
■ How many dependencies, both to and from a component, are there?
■ How many components does a chosen component communicate with?
■ Are there obvious cyclic dependencies between components?

SIG Architecture Quality Model 8 / 18

3.3 COMPONENT COHESION

Component Cohesion measures the degree to which components encapsulate specific business responsibilities /
functionality within the system. Components are considered cohesive when they have been designed around a
specific business responsibility and only consist of those sub-components and modules that implement the defined
requirements of the business responsibility.

The logic within a component should be related so that the component is more reusable and/or replaceable by a
new one when the need arises. When a component contains diverse functionality, it is more likely that it is going
to be referred to by more external components, which will lead to more dependencies across the system. This
functional entanglement often results in increased development effort and longer release cycles when any
foundational modifications to the system is needed to be made.

Metric information
■ Measurement level: Component
■ Unit of measurement: Ratio between the component’s internal and external dependencies.
■ Order: Higher is better

Related questions
■ Do subcomponents communicate only to components outside of the chosen component?
■ Is there a complete path between all subcomponents within a component? Do all subcomponents depend on

at least one other subcomponent within a component?
■ Are there identifiable “islands” / graphs where some subcomponents communicate with some subcomponents

but not others?

3.4 COMMUNICATION CENTRALIZATION

This metric measures the extent in which the communication from one code component to another is centralized,
specifically the degree to which code within a component is externally accessed by other components and the
degree to which code inside the component has direct dependencies on code located in other external
components. The less internal code that interfaces with other components in the system, the better encapsulated
a component is said to be.

SIG Architecture Quality Model 9 / 18

When calls from a component to other components are not centralized, encapsulation is low, resulting in a
component that is increasingly more sensitive to changes in the “outside world” and makes it more difficult to
update the component if such changes occur. Likewise, when a large volume of code of a component is makes up
its interface, i.e. the code that is directly accessed by other components, also indicates low encapsulation of the
code within the component. As a result, when the code within the component is updated, the risk that other
components are affected (due to changes to the interface) is higher.

Metric information
■ Measurement level: Component
■ Unit of measurement: Percentage of code within a component that is not involved in direct communication

with other components.
■ Order: Higher is better

Related questions
■ What other components does this component communicate with?
■ Where in the code are these dependencies implemented?
■ Is the part of the component that communicates scattered across every file, or is it nicely centralized in certain

files or subcomponents?

3.5 CODE REUSE

Measures the ratio between the amount of code duplication between components.

Code is often duplicated across components when specific functionality is common across the system, however
this manner of reusing code decreases the ease in which modifications can be made if duplicated code must be
changed at each location it is present. Duplication within components is an issue that developers must contend
with, however is manageable as the modification scope is localized. Once code is reused across components
through either directly copying and pasting existing code or utilizing duplicate boilerplate code to an excessive
extent, components become more and more coupled, and the modification scope grows exorbitantly.

SIG Architecture Quality Model 10 / 18

Metric information
■ Measurement level: Component
■ Unit of measurement: Percentage of code that is duplicated with other components.
■ Order: Lower is better

Related questions
■ How many components contain code that is copied directly from a chosen component?
■ How many clones of a certain code segment are there?
■ Are clones located inside a component or are code clones found across the architecture?
■ How much code in total volume is redundant from one component to another?

3.6 BOUNDED EVOLUTION

Measures the degree of co-evolution of components within a system based on the frequency of coupled code
modifications over time. Co-evolving components are defined as components modified together at a regular
frequency and indicate implicit functional relationships within a codebase.

The frequency at which components are updated should be limited and respective to a specific context / business
function. Implicit code dependencies are often found across components that evolve together at a high frequency,
with distant co-evolving components an indication of an anti-pattern of architecture due to a lack of contextual
boundaries within a given system. Ideally components that undergo change together are logically grouped
together and/or consolidated to reduce risk of an ever increasing maintenance scope.

SIG Architecture Quality Model 11 / 18

Metric information
■ Measurement level: Component
■ Unit of measurement: Percentage of changes made to the component involved in co-evolution with other

components.
■ Order: Lower is better

Related questions
■ What parts of code are changing together?
■ Are those parts spread across the architecture, or located within a component?
■ When the component needs changes in other components, is it always the same parts that are touched?

3.7 DATA COUPLING

Measures the degree to which components are dependent on data stores within the system.

Multiple components accessing a data store reduces flexibility, as changes to the data store structure will require
changes to all components using it.

SIG Architecture Quality Model 12 / 18

Metric information
■ Measurement level: Data store
■ Unit of measurement: The number of components with dependencies to the data store.
■ Order: Lower is better

Related questions
■ What components need to access the data?
■ Which component has ownership over this data?
■ Should this component provide an interface to allow other components to access its data?

3.8 TECHNOLOGY PREVALENCE

Measures the degree to which a system is built in modern and common technologies. Technologies are deemed
prevalent if there is widespread support and usage in the current software development industry, with more
modern technologies favored due to increased recent innovation and support across the industry.

It should be avoided that technologies become obscure, in the sense that they are hardly ever used in industry, as
this limits the availability of tools, libraries, and knowledge.

SIG Architecture Quality Model 13 / 18

Metric information
■ Measurement level: Component
■ Unit of measurement: Weighted average for all technologies used in the component. For each technology, the

weight is based on the number of files in which the technology is used, and the value is based on the
technology prevalence rating in SIG’s benchmark.

■ Order: Higher is better

Related questions
■ Which technologies are used to implement this component?
■ Is the component implemented in a single technology, or does it also use a number of supporting

technologies?
■ Are the component’s technologies unique in the architecture, or do they use the same technologies as

everything else?
■ Are the used technologies still common in the industry at large?
■ Is the popularity of these technologies going up or down?
■ Are the used technologies common in this domain?
■ Do the used technologies have alternatives that are more mainstream and/or modern, that could be used

instead?
■ If the technologies are uncommon, were they commonly used at some point in the past?

3.9 COMPONENT FRESHNESS

Measures the degree to which components are actively being kept up to date and maintained. Components that
are “fresh”, or actively maintained, are easier to further maintain, and their knowledge is retained and readily
available across the system.

Fundamentally, active maintenance over a component suggests that knowledge over that component is top of
mind for a development team. This further suggests that maintenance and functional growth within that
component can be completed with a higher degree of efficiency as opposed to components that have not
undergone any recent change. Too much activity itself can be an architectural “smell” with regards to component
integrity, however too little activity also suggests a component is outdated and knowledge is slowly being lost
within the development team. Furthermore, regular maintenance should ideally be uniform to the system and
distributed over its multiple components and not centralized within a single component.

SIG Architecture Quality Model 14 / 18

Metric information
■ Measurement level: Component
■ Unit of measurement: Relative weekly churn, calculated by dividing the average weekly churn by the

component’s volume.
■ Order: Center of the Bell curve is better

Related questions
■ Looking at churn over time, do we see that most modifications happen in just a few components?
■ Which components were most recently touched?
■ Which components have not been touched for the longest time?
■ What percentage of volume of components has been churned since the past (sprint/month/year)?
■ Is there a clear pattern of only some components being churned while others remain unchanged?

3.10 KNOWLEDGE DISTRIBUTION

Measures the degree to which development can grow and retain knowledge over a given system. Knowledge is
determined in part by active development across the components that compose the system and the relative
distribution of the development team that is able to efficiently contribute to these components further.

Knowledge should be uniformly distributed over a system to ensure continued development can be accomplished
with ease as the development team undergoes change over the lifetime of a system. Only one developer working
on a large component or an entire system should be avoided as there is a risk of losing the knowledge when the
person leaves. Likewise, all developers continuously working in a single component indicates a lack of distinct
divisions of responsibility within the system and/or development team.

SIG Architecture Quality Model 15 / 18

Metric information
■ Measurement level: Component
■ Unit of measurement: Number of authors with significant contributions to a component per KLOC.
■ Order: Center of the Bell curve is better

Related questions
■ How many developers have contributed functional code to a given component?
■ What percentage of the code is written by each author of the chosen component?
■ Are there authors that own significantly more code than the other contributors?
■ Are there any components that have not had an author within the past (sprint/month/year/decade)?
■ Do authors regularly contribute roughly the same amount of churn on components that they are authors of?

Does commit volume vary significantly?

SIG Architecture Quality Model 18 / 18

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

www.softwareimprovementgroup.com

marketing@softwareimprovementgroup.com

