
Benchmark Report | 2022

THROUGH
THE SIG
LOOKING
GLASS

softwareimprovementgroup.com

FOREWORD
2022 SIG Benchmark Report

The SIG annual benchmark reports
have always interested me highly,
but this year’s report is of par-
ticular relevance. Going through
the findings, I am sure you will see
many pieces of information that
will make you think.

In fact, I believe in this report our team
will present insights that will change
the way you deal with the development
of software. Or to put it more bluntly,
if reading the report doesn’t make you
change your way of working, we either
failed to get our story across, or you’re
one of the very few exceptions.

Every year, we present how software and
software quality are doing globally, how
industries perform and how different
technologies stack-up. See for yourself
where your industry has ended up, and
whether you see the need to increase
your efforts. Have a look at which
technologies will typically give you best
quality and reconsider your legacy estate
to evaluate if this isn’t the moment to
start modernizing.

However, I want to draw your special
attention to our research on open source.

2

Estimates state that no less than 80% of
the world’s production code is actually
open source software, but the way
open source is managed is frankly up
for renewal. Read the research to see
how long known vulnerabilities are left
untouched, hoping nothing goes wrong.
Have a look at our ground-breaking
research where we analyzed how the
build quality of software impacts the
likelihood of a security breach, or a
vulnerability occurring. Please read this
part carefully, and you will change the
way you work with open source, and

you will never be surprised again about
the Log4J event. This was an accident
waiting to happen.

I wish you a truly informative reading
experience going through our report.
We’re proud of the results, and we
hope they will help you in creating that
healthier digital world we aim for.

Best regards,

Luc Brandts

Dr. Luc Brandts is CEO of SIG Holding. He has worked in the
information technology industry since 1994 when he founded his
company, BWise, growing it to become a recognized global market
leader in the risk management and compliance space. Throughout
his career, he has also held various board member and investor
roles. Brandts holds a PhD in mechanical engineering from the
University of Eindhoven.

Dr. Magiel Bruntink is Head of Research at Software Improvement
Group. He is an internationally published author in the field of
software engineering, with 20 years of experience in research,
consulting, and education. Bruntink holds a PhD in Computer
Science from Delft University of Technology.

Author Benchmark Report

Group CEO

3

CONTENTS
 � Introduction

 � Software Assurance requires both outside-in and inside-out ap-
proaches

 � Software build quality needs continuous improvement to
keep supporting business goals

 � Industry sectors and technology stacks are high-level reference
points in SIG benchmark

 � The ticking timebomb of uncontrolled software supply chains

 � Healthy usage of open-source software is in urgent need of attention

 � The severity of vulnerabilities is not a major factor whether updates
are done

 � Unmanaged dependencies are a cause of slow updating

 � Lower system build quality is correlated with slow updating
of dependencies

 � Build quality and vulnerability risk are related: lower quality
has more risk

 � Getting software supply chains back in control

6

6

10

12

16

18

20

23

25

28

33

4

 � Shifting-left on security and software supply chain risks

 � Sigrid | Software Security benchmark is based on the analysis of
thousands of security experts

 � Deployment type is used by Sigrid | Software Security to fine-tune
weakness scores

 � Large-scale and fine-grained software ecosystem analysis with FASTEN

 � FASTEN fine-grained analysis can trace call chains from application
to vulnerability

 � SCRAMBLE - Smart Code Review Assistance Module Blending
Leading Expertise

 � Points of Action

36

38

40

42

44

46

50

5

SOFTWARE
ASSURANCE
REQUIRES
BOTH OUTSIDE-
IN AND
INSIDE-OUT
APPROACHES

Introduction to the industry trends in
build quality

6

The annual SIG Benchmark Report examines the software build quality
trends SIG has measured in software engineering. The 2022 edition
spans more than 13 years of measurements across more than 7,500
systems. Our database is an aggregation of build quality and security
measurements of more than 70 billion lines of code.

OUTSIDE-IN

External quality Internal quality

INSIDE-OUT

SOFTWARE SYSTEM

Functionality

“Quality is defects
in use”

“Quality is
software construction”

Focus of most QA team,
focus on functional
suitability, correctness
and acceptance

Build quality drives
cost of ownership and

external quality

Implementation

In order to fully understand the risks of a software system, it is not enough to look
at the software from the outside. You really need to look at all the code, only then a
full understanding is possible. Seeing a demo, using the software, or trying to break
in from the outside will show less than 10% of potential trouble.

7

Over many years, decades even,
software engineering has quietly
evolved from its niche and proprietary
beginnings to its current state of
sprawling ecosystems of (open source)
software. At the same time, the
maturity of programming language
technology, automated tool support, and
development process expertise have all
increased dramatically.

THE CORE CHALLENGES THAT REMAIN
In previous editions we already turned
our attention to technical debt and
legacy software weighing down the
IT budgets and innovation capacity
of organizations across the industry.
Since then, legacy software remains
the elephant in the room for many
organizations and will be for years
to come. At the same time, sustained
developments in recent years are
showing that build quality improvement
is indeed possible with the right
technology, process, and people.

In this edition however, we are turning
our attention to a mostly silent revolution
that has taken place in enterprise
software of recent years:

80% of modern applications are
sourced from software supply
chains, often third-party open-
source software projects.

Sprawling open-source ecosystems
such as Maven (Java), NuGet (C#), Npm
(JavaScript), and many others, have
become essential to modern software
development. It is easier than ever for
developers to obtain common library
functionality from software supply
chains, and to contribute back to the
open-source projects that produce them.
This reuse capability provides major
productivity benefits across the industry.

However, maintaining that this revolution
happens silently is getting increasingly
hard. The large-scale reliance on
software supply chains indeed comes
with risks, often impacting security or
data privacy aspects. A recent and
renowned example in a long series of
security vulnerabilities, Log4Shell led to
widespread coverage in the mainstream
media around the 2021 Holidays.

This 2022 edition of the Benchmark
Report examines the state of open-
source health of thousands of our
enterprise software clients.

We follow-up with recent R&D directions
for SIG’s assurance and benchmarking
services that facilitate the industry to
shift-left on security and software supply
chains risks.

8

HHIII

HHHII

HHHHI

2015 2016 2017 2018 2019 2020 2021 2022

M
on

th
ly

 W
ei

gh
te

d
A

ve
ra

ge
 R

at
in

g
GLOBAL BUILD QUALITY AS MEASURED BY SIG
Including 100K person-years worth of enterprise software

Maintainability
Analyzability
Modifiability

Modularity
Testability
Reusability

BUILD QUALITY PROPERTIES

9

Introduction to the Industry Trends
in Build Quality

SOFTWARE BUILD
QUALITY NEEDS
CONTINUES
IMPROVEMENT
TO KEEP
SUPPORTING
BUSINESS GOALS

10

Looking at the timeline of the past seven
years of our core maintainability metrics,
we are clearly seeing an upward trend
in the overall scores since about 2018.
That’s indeed positive, because in the
enterprise software domain, continuous
quality improvement is a necessity.
Without it, business falls behind on cost
efficiency, innovation, and agility to
deliver in the market.

The largest build quality improvement
is seen for Modularity, which is the
measurement of software component
composition. Software applications
developed today tend to be smaller and
better structured than the builds of the
past - a very positive trend. Whether
this continues is determined by teams
maintaining focus and getting the help
they need to safeguard build quality.

A core element of SIG’s software assurance is the measurement of
maintainability, an aspect of software build quality as defined by ISO/
IES 25010:2011. Maintainability is a major factor in keeping software-
related TCO low, and business agility high. With Sigrid, SIG has
measured Maintainability and its underlying metrics for 7,500 of our
client’s software systems over the years.

11

SIG HAS THE LARGEST SOFTWARE METRIC DATABASE IN THE WORLD
The SIG benchmark is based on a certified and yearly calibrated subset of the
data in our data warehouse.

 7,500+ systems evaluated

 800.000+ inspections

 70 billion+ Lines of Code
 in data warehouse

 300+ technologiesSEARCH

Clipboard-list-check

01
00

INDUSTRY SECTORS
AND TECHNOLOGY
STACKS ARE HIGH-LEVEL
REFERENCE POINTS IN
SIG BENCHMARK

12

Of course, these ranking are mostly
indicative. An actual choice of
technology stack depends on many
factors that depend on application type,
organization, and other factors. Within
each industry sector there can also be
high- and low performers that may not
be reflected by the averages shown here.

• Deltas indicate position change since
the 2021 Benchmark report.

• Scores range between 0.5 and 5.5
stars in the SIG Maintainability Model.

• Scores are weighted by their (code)
volume, most recent snapshot per
system.

• At least 50 systems measured per
sector, and 45 per technology stack.

In addition to build quality metrics, our database includes data on the
industrial sectors in which the systems of our clients operate, and on
the technology stacks they employ. For yearly reference, we rank the
most popular industry sectors and technology stacks in our database,
according to the average build quality we see for their systems.

Delta
Technology stacks: 2019

through 2021
Score

1 Low Code 3.37

2 + Scripting and Mobile 3.30

3 - Java/JVM 3.29

4 Microsoft/.NET 3.05

5
Packaged Solution

Customizations
2.99

6 BPM/Middleware 2.91

7 Legacy/3GL/4GL 2.49

Delta
Technology stacks: 2019

through 2021
Score

1 Industrial Transportation 3.44

2 ++++ Energy, Oil & Gas 3.40

3 − Banking 3.32

4 − Insurance 3.25

5 Government 3.16

6 −− Financial Services 3.16

7 +
Software & Computer

Services
3.06

8 ++ Telecommunications 2.87

9 −− Retail 2.83

10 − Support Services 2.83

13

GLOBAL
BUILD
QUALITY

14

MAINTAINABILITY MEASUREMENT IS OUR TOOL TO DETERMINE SOFTWARE
BUILD QUALITY

+2

HHHHI

Perform measurements on
the code base

Aggregate measurements to
quality profiles

Translate quality profiles to
system characteristic scores

Translate to ISO 25010
sub characteristic scores

Translate to overall rating
of technical quality

1 - MEASUREMENTS

2 - QUALITY PROFILES

3 - SYSTEM CHARACTERISTICS

4 - ISO STANDARD
SUB-CHARACTERISTICS

HHHII

HHHHI

HHHII

+6

HHHHI

HHHII

HHHII

5 - OVERALL RATING

SEARCH

15

THE TICKING
TIMEBOMB OF
UNCONTROLLED
SOFTWARE
SUPPLY CHAINS

Healthy usage of third-party open source software (OSS)
provides many benefits, like increased development
speed through code reuse. Already back in 2014, Contrast
Security reported that 80% of applications consist of
third-party library code.1 Now in 2022 this rate is likely
much higher, following the strongly growing demand of
OSS packages that is being reported by software supply
chain vendors like SonaType in the State of the Software
Supply Chain (SSSC) report.2

1. cdn2.hubspot.net/hub/203759/file-1100864196-pdf/docs/Contrast_-_Insecure_Libraries_2014.pdf
2. sonatype.com/resources/white-paper-2021-state-of-the-software-supply-chain-report-2021

16

While it is unthinkable to forego
the reuse and development speed-
up opportunities of OSS packages,
there are fundamental risks that need
mitigation. A point clearly made by
the President of the United States in
February 2021, in the Executive Order on
America’s Supply Chains, which has since
been followed up by organizations and
vendors world-wide. With the increased
demand, also the rate of reported
security vulnerabilities (CVEs) is ever
growing (20K CVEs in 2021, compared
to 18K in 2020). Perhaps to prove the
point, just before the 2021 Holidays, the
Log4Shell vulnerability struck and forced
security assurance teams across the
globe to mitigate.

Since the beginning of 2021 SIG tracks
1,000 client systems specifically to help
mitigate software supply chain risks with
our Sigrid Open Source Health module. In
this edition of the Benchmark Report, we
can provide unique insights due to our
combination of software supply chain
and build quality data, as observed with
our enterprise software clients.

SIG Research analyzed a grand total
of 5.7 million data points in the period
2021-Q1 until 2022-Q2, across 18
different package management systems,
including all the major OSS ecosystems.

WHAT WE
ARE SEEING
SUGGESTS THE
FOLLOWING:
Overall, the enterprise software
domain urgently NEEDS TO IMPROVE
its OSS USAGE HEALTH.

OSS libraries of lower build quality
have a HIGHER RISK of emerging
SECURITY VULNERABILITIES.

Client applications with HIGHER BUILD
QUALITY and automated dependency
management ARE AHEAD of the pack.

17

0.0

0.2

0.4

0.6

11 46 0 365 1825

D
en

si
ty

DEPENDENCY STALENESS DENSITY
Tracking 49K dependency versions of 18 ecosystems in 1000 client systems

HEALTHY USAGE OF
OPEN-SOURCE
SOFTWARE IS IN
URGENT NEED
OF ATTENTION

18

Healthy usage of OSS is a multi-factor
concept, and often a resource balancing
act on the scale of a software portfolio.
Typical enterprise software systems have
50 direct OSS dependencies, let alone
the dependencies of those dependencies.
Still, key risk factors to manage for all
OSS dependencies include:

• FRESHNESS: are we up-to-date with
the latest versions?

• VULNERABILITY: are we exposed to
known security vulnerabilities?

• BUILD QUALITY: does the software
we rely on conform to build quality
standards?

There are many more factors to consider,
such as the predictability of OSS
development projects, potentially lurking
code licensing risks, issues related to
library popularity, API coupling, and
solution lock-in.

The data we are seeing indicate that,
despite the best efforts of developers
and Software Composition Analysis (SCA)

tool vendors, usage of OSS is still far
from healthy. This observation applies
to all major technologies we are seeing,
from Java (Maven, Gradle), .NET (NuGet),
to JavaScript (Npm), PHP (Composer),
and others.

In our Dependency staleness density plot
we show how staleness is distributed
across our dataset. There are two clear
”humps” visible in the data: the hump on
the left-side contains dependencies that
are upgraded quickly once new versions
becomes available. The right-hand-
side hump, representing the majority,
are dependencies for which upgrades
are postponed; either due to lack of
information or because of accepting with
the inherent risks.

Clearly, this is a large and accumulating
risk factor, given that stale versions
miss out on necessary fixes for security
vulnerabilities and other issues.
SonaType’s SSSC report indicates
between 6.5% and 29% of OSS
packages indeed contain vulnerabilities.

KEY FINDING: Open-source libraries are updated years rather than days
after updates become available. This is a growing hazard: the risk of security
vulnerabilities emerging in those stale libraries is building up. Many of
them already contain vulnerabilities. Stale libraries can be tracked down
automatically and can often be updated easily.

!

19

50%

40%

30%

20%

10%

0%

0 100 200 300 400
Days since a dependency is known to be vulnerable

Ch
an

ce
 t

ha
t

a
vu

ln
er

ab
le

 d
ep

en
de

nc
y

w
as

 u
pd

at
ed CVE severity Low Medium High Critical

TIME-TO-UPDATE: SEVERITY OF VULNERABILITIES
Tracking 8000 vulnerable Maven dependencies in 220 Java systems

THE SEVERITY OF
VULNERABILITIES IS NOT
A MAJOR FACTOR...

20

A common idea is that the severity of vulnerabilities, a combination of
their estimated impact and ease of exploit, has a relation with how fast
software teams do updates. Vulnerabilities are public reports, often
referred to as CVEs (for Common Vulnerability Enumeration), that are
listed by organizations such as the National Vulnerability Database
(NVD) or GitHub Advisories, and other sites. Once CVEs are published,
in most cases a patched version of the affected software is already
available, and people are expected to update as soon as possible.

...IN WHETHER UPDATES
ARE DONE

TIME-TO-UPDATE is a measure calculated using survival analysis, a
methodology commonly used in medical studies revolving around interventions
and event follow-up time. We measure the duration between first seeing
a library version appear and the time it is updated to a next version. The
method accounts for cases that were not followed-up, so we can get an
indication of the chance a version was updated (y-axis) after a certain time
has passed (x-axis).

21

SO, DO TEAMS UPDATE VULNERABILITIES
FASTER IF THEY ARE MORE SEVERE?
Surprisingly, no, says our joint academic
research with the Technical University
Delft.1 Among OSS projects, severity, and
other vulnerability metadata, are not
convincingly used to prioritize or address
vulnerabilities.

Unfortunately, the situation appears to
be quite similar for enterprise software
development, as shown by analysis of
data from our database. To perform this
analysis, we joined outside data on CVE
publication dates and affected versions
with the versions used among a subset
of our client’s systems. Here we include
client systems that use the Maven
dependency management tool, one of
the most prevalent in the industry.

The plot shows that severity of
vulnerabilities is only a very minor
factor in time-to-update, and only in
the first few days after a vulnerability
was published. Each level of severity
roughly has the same update speed.
Our academic research drills down
further into the reasons and paths to
remediation, based on our observations
in OSS project.

For now, we have one key message,
which is to immediately increase the
urgency in addressing OSS usage health
in the enterprise software domain.
Developers and software portfolio
managers require more visibility of
vulnerabilities they are already exposed
to and need to be provided with ways to
remediate them.

KEY FINDING: Users of known vulnerable open-source libraries are not
updating quickly, even if vulnerabilties are critical. 70% are still using known
vulnerable Java libraries after a year has passed. In many cases, security
updates are available that can be implemented by development teams.

1. R. Heddes, Vulnerability Risk Modelling in Open Source Software Systems, Master’s Thesis,
 TU Delft and Software Improvement Group, 2022.

!

22

50%

40%

30%

20%

10%

0%

0 100 200 300 400
Days since a dependency is used

Ch
an

ce
 t

ha
t

a
de

pe
nd

en
cy

 w
as

 u
pd

at
ed

Dependency class Managed Unmanaged

TIME-TO-UPDATE: MANAGED VERSUS UNMANAGED DEPENDENCIES
Tracking 151K dependency versions from 9 ecosystems in 900 client systems

UNMANAGED
DEPENDENCIES ARE
A CAUSE OF SLOW
UPDATING

23

In contrast, some dependencies are
still included in an unmanaged fashion
– that is to say, code artifacts (Jars,
DLLs, or JavaScript files) are included
as-is, typically mixed within the source
code structure of an application. These
artifacts needs to be tracked and
updated by hand, so to speak. This
practice, which sounds like something
of the past, is still used for 13% of the
dependency versions we see in the past
year.

In the time-to-update analysis
here we are looking at about 19K
unmanaged dependency versions
versus 151K managed versions for the
main technologies Java, C# .NET, and
JavaScript. Overall time-to-update is
long – as we observed before with many
dependencies going stale. Even for the
managed dependencies, only about
33% were updated after a year has
passed. Clearly though, unmanaged
dependencies are the even slower bunch,
being updated at half the rate or less.
Unmanaged dependencies are often
hidden away in large portfolios, making
them an unseen risk. Automated tooling
such as Sigrid® can detect and help
mitigate these cases.

KEY FINDING: Open-source libraries are sometimes included in code bases
without automated package management. These unmanaged libraries are
updated more than 2 times slower than managed libraries. This practice can
be tracked down and replaced by automated package manangement in most
cases, reducing the risk of libraries going stale.

Let’s zoom in on some factors that may be underlying the overall slow
update frequency of OSS dependencies. Broadly speaking, there are
two classes of dependency management approaches: managed and
unmanaged. In the managed case, an automation tool is used to keep
track of required dependencies, resolve transitive dependencies, notify
of updates, perform installation, and so on. Examples are Maven,
Gradle, NuGet, Npm, and many others.

!

24

LOWER SYSTEM BUILD
QUALITY IS CORRELATED
WITH SLOW UPDATING
OF DEPENDENCIES
Next, let’s turn our attention to
the build quality of the enterprise
software systems that SIG is
tracking. As explained earlier in this
report, measuring maintainability
is also the bread-and-butter of
our software assurance services,
making it possible to bring together
data from multiple perspectives.

An important task in software
maintenance is keeping dependencies
up to date. Often, this task consists
of incrementing version numbers in
configuration files and re-running the
test suites, but not always. Sometimes
version changes come with changes to
an API or to the core functionality, asking
for code changes to be implemented in
the system.

25

50%

40%

30%

20%

10%

0%

0 100 200 300 400
Days since a dependency is used

Ch
an

ce
 t

ha
t

a
de

pe
nd

en
cy

 w
as

 u
pd

at
ed

Client system maintainability HHIII HHHII HHHHI

Tracking 161K dependencies from 18 ecosystems in 1000 client systems

TIME-TO-UPDATE:
MAINTAINABILITY OF
CLIENT SYSTEMS

26

In general, better maintainable code
is easier and more fun to update,
because potential issues are easier to
be found since the code is easier to
understand, test, and – if needed – fix.
We therefore expect a correlation to be
visible between maintainability scores
for systems and the rate at which they
update their dependencies.

In the plot we track the time-to-update
for three groups of systems based on
their average score of respectively 2, 3
and 4 stars in the SIG Maintainability
Model. For 1- and 5-star systems too
few datapoints remained, so they are
excluded from the analysis. While the 3-
and 4-star systems are a strong majority
(which is a good thing!) for all three
groups a confidently distinct outcome is
visible.

Apparently, 4-star systems do tend to
update their dependencies faster than
3- and 2-star systems, and 3 stars
outperform 2 stars. After 100 days, 25%
of the dependency versions of 4-star
systems have been updated, compared
to just 10% and 6% for the 3- and 2-star
system, respectively.

Aiming for high build quality, including
maintainability, is recommendable its
own right. These data further support
that general advice: aim for above
average quality (4 stars) and help
reduce security risks coming from
outdated dependencies. That will lead
to fewer cases of panic when security
vulnerabilities are published and reach
the general press.

KEY FINDING: Enterprise software systems of higher build quality update
their open-source libraries much faster than lower quality systems. At the
recommended 4-star build quality, updates are 50% faster than at 3-stars
and more than 300% faster than in 2-star systems. Aim for 4 stars in new
developments, monitor quality continuously, and refactor existing code as much
as feasible.

!

27

BUILD QUALITY
AND
VULNERABILITY
RISK ARE
RELATED
Another common intuition we would like to address is the relation
between build quality and the emergence of vulnerabilities. Intuitively,
vulnerabilities would be appearing more often in software with lower build
quality. Why? Because lower quality software is harder to understand,
modify, and test, increasing the potential for error significantly. Lack of
quality in design, architecture, and process, can fundamentally increase
the risk of future security vulnerabilities as well.

28

n = 3550n = 990 n = 1130

0%

50%

100%

150%

HHIII HHHII HHHHI

MaintainabilityRi
sk

 o
f v

ul
ne

ra
bi

lit
ie

s
re

la
ti

ve
 t

o
3

st
ar

s
m

ai
nt

ai
na

bi
lit

y

RELATIVE VULNERABILITY RISK COMPARED TO AVERAGE BUILD QUALITY
Vulnerability and build quality data from 5700 Maven dependency versions

LOWER QUALITY
HAS MORE RISK

29

30

In the bar chart we show the relative risk
scores of libraries grouped by their build
quality score. In the middle is the 3-star
group, which acts as the reference with
100% risk. The proportion of vulnerable
dependency versions in that 3-star
group is about 15% of 3,550, giving
also an idea of absolute risk. To the left
and right are the 2- and 4-star groups,
respectively, with their risk of having at
least 1 vulnerability relative to the 3-star
group. There were too few instances
of 1-star and 5-star libraries to justify
presentation.

The bar chart shows that 2-star build
quality is correlated with a higher
relative risk of vulnerabilities: about
33% higher than for 3-star build quality.
Positively, 4-star build quality has a 28%
lower risk of vulnerabilities.

So, 4-star dependencies are less
often vulnerable, arguing for a library
management strategy that is informed
by the build quality of the libraries
themselves. Commonly, OSS libraries
are added without batting an eye to
their internals; that practice will need to
change. While our analysis is ongoing, in
our underlying data we see branch-point
complexity as the strongest predictor of
vulnerabilities.

To wrap up, we would like to remark that
vulnerabilities do still occur at all levels
of build quality, indicating that software
is never perfect. Additional tooling,
secure software design, and process
measures, are required to further reduce
security risks.

KEY FINDING: Open-source libraries are sometimes included in code bases
without automated package management. These unmanaged libraries are
updated more than 2 times slower than managed libraries. This practice can
be tracked down and replaced by automated package manangement in most
cases, reducing the risk of libraries going stale.

!

31

32

GETTING
SOFTWARE
SUPPLY
CHAINS
BACK IN
CONTROL
with these three key findings

33

THE
ENTERPRISE
SOFTWARE
DOMAIN
URGENTLY
NEEDS TO
IMPROVE ITS
OSS USAGE
HEALTH.

We are seeing way too long response
times before OSS dependencies are
updated, even in the presence of critical
security vulnerabilities. Comparing
notes with the SonaType SSSC report,
the enterprise software industry is not
doing better than the OSS domain in this
regard. The tools to implement stronger
OSS usage strategies are all available
– it is a matter of implementing and
enforcing their usage.

HIGHER
APPLICATION
BUILD
QUALITY AND
AUTOMATED
DEPENDENCY
MANAGEMENT
CORRELATE
WITH OSS
USAGE HEALTH.

Looking in detail at our data gathered
using the Sigrid platform, some
correlations are emerging that could
help guide improving OSS usage health.
First, application code bases of higher
build quality tend to update sooner
and keep dependencies fresher overall.
Second, and perhaps unsurprisingly, the
application of automated dependency
management tools more than double the
overall dependency freshness.

1 2
34

This result calls for integration of build
quality measurement of libraries into
dependency risk management strategies,
in addition to already commonly applied
SCA tools and expert-driven security
processes.

Finally, it is important to realize that
dealing with vulnerabilities is like
mopping up the floor with the tap
still running. Most software is full of
weaknesses that were introduced
through error, early design flaws,
changing requirements, missed
mitigation actions, or even malicious
intent. Some weaknesses are more
serious than others, and only a few will
later cause critical vulnerabilities.
Spotting and prioritizing the critical
weaknesses earlier on is an important
direction in software assurance, helping
teams address issues before they
manifest in public. We address this need
for shifting-left in the next section.

OSS LIBRARIES OF BELOW-
AVERAGE BUILD QUALITY
HAVE CLOSE TO 2 TIMES MORE
RISK OF VULNERABILITIES
THAN LIBRARIES AT THE
RECOMMENDED 4-STAR LEVEL.

123
3

35

SHIFTING-LEFT
ON SECURITY
AND SOFTWARE
SUPPLY CHAIN
RISKS
Shifting-left is an often-heard phrase these days. With some terminology,
we can be a bit more concrete in what we think should be accomplished
with this shift. To be short about it, software development shifting-
left implies that it becomes aware, diagnoses, mitigates, or resolves
(security) weaknesses at earlier development stage. Such weaknesses
are often precursors to more serious problems down the line, for instance
security vulnerabilities, performance degradations, or outages.

36

Many emerging software quality
standards and modern industry
taxonomies on software use the Mitre
CWE – Common Weakness Enumeration –
to refer to standardized descriptions
of weaknesses in software. Among
such standards are, for instance, the
OWASP Top 10 listing the most common
and problematic security issues, and
the new ISO/IEC 5055:2021 standard
for “Automated source code quality
measures” that has chapters on security,
performance efficiency, and reliability.

In our view, a lot more needs to
happen than creating tools to facilitate
automatic checking of source code. For
instance, shifting-left on security requires
changes in in early design phases,
requirements analysis, and training.
Many marketplace tools such as Static
Analysis Security Testing (SAST), Dynamic
Analysis Security Testing (DAST), and
several other categories, can indeed
help the process become more efficient.
However, these tools also have blind
spots, and they can generate false
alarms. Expertise and eyes-on review will
still be a necessary complement.

In this section we will highlight three of
our solution directions to allow software
development to shift-left:

Sigrid® | Software Security: As a new
module for Sigrid, SIG’s software
assurance platform, we are developing
a new benchmark that highlights and
prioritizes the thousands of weaknesses
found by SAST tools. It allows us to
highlight weaknesses that commonly
lead to critical vulnerabilities, and to
filter out those that are exploitable only
in niche circumstances.

FASTEN: SIG participates in joint
academic-industrial research to
create the next generation tools
and approaches in software supply
chain analysis. These tools spot issue
precursors that are lurking in software
ecosystems in a fine-grained and
accurate manner.

SCRAMBLE: SIG develops support for
security code review to help alleviate a
pressing concern: extreme shortage of
software security expertise. SCRAMBLE
will support security code review that
both leverages available SAST, DAST,
and other tools, and complements the
blind spots of automated tools.

37

SIGRID® | SOFTWARE SECURITY
BENCHMARK IS BASED ON THE
ANALYSIS OF THOUSANDS OF
SECURITY EXPERTS

2

4

6

0 1 2 3 4
CVSS Exploitability

CV
SS

 Im
pa

ct

CVSS Severity
Low
Medium
High
Critical

SIG CWE Benchmark dataset: 97K CVEs from 2015-2022

38

Each CVE is scored using a standardized
system called Common Vulnerability
Scoring System (CVSS) which
incorporates details on attack vector,
complexity, impact, and so on. Finally,
CVSS provides a score between 1 to
10 reflecting the CVE’s overall severity.
Commonly, this score is categorized into
low, medium, high, and critical severity
levels.

In the dataset plot we illustrate the
dataset that we used to develop the
SIG CWE benchmark. There are 97K
CVEs included, dating from 2015
onwards, which are scored on impact,
exploitability, and overall severity.

The key insight is that CVEs contain links
to the software weaknesses that enabled
the CVE in the first place. If only those
weaknesses had been found and fixed
before, right? To give an example, the
following three weaknesses underly the
(first) Log4Shell vulnerability

CVE-2021-44228, which is scored 10 for
critical severity:

• CWE-502 Deserialization of Untrusted
Data

• CWE-20 Improper Input Validation
• CWE-400 Uncontrolled Resource

Consumption

Simply speaking, seeing such
weaknesses in software is often a cause
for alarm. Fixes should be prioritized
over weaknesses that are less correlated
with severe vulnerabilities. In the full
benchmark we weigh the final severity
scores by all linked vulnerabilities, to
provide a bit more nuanced scoring. In
addition, we increase finding relevance
by include context data related to the
system in question.

Nowadays, software vulnerabilities comprise vast public datasets,
hosted by institutes such as the US National Vulnerability Database
(NVD) and various others. Each vulnerability report, also called CVE,
went through a phase of expert analysis, scoring, publication, and
potential re-analyses. The information included in such CVE databases
is vast. In 2021 alone, 20K CVEs were reported, up from 18K in 2020.

39

DEPLOYMENT TYPE IS USED BY
SIGRID® SOFTWARE SECURITY
TO FINE-TUNE WEAKNESS
SCORES

Local Physical

Network Adjacent Network

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

All CWEs scored by SIG

CW
E

Se
ve

ri
ty

Public-facing

Internal

Connected

Physical

SIG CWE Benchmark arranged by deployment type

40

Even if mitigations are already
implemented, weaknesses in software
need to be clearly flagged and
documented. In the future, mitigations
may go out of date and require
adaption, which could re-enable existing
weaknesses to become exploitable.

As shown in the graph, the SIG CWE
Benchmark accommodates for the
selection of a deployment type. That’s
an essential property of an operational
software system; determining whether
the public-at-large has access to the
system, or just people logged in on
the internal network, or whether even
physical access to a system is needed to
exploit a weakness.

In the Sigrid® | Software Security module,
systems-under-analysis are assigned
a deployment type to determine the
overall severity of weaknesses found. The
SIG CWE Benchmark then selects only
the relevant CVEs to use in the scoring

system, putting emphasis on the critical
CVEs that can be exploited with public
access, versus the low severity ones for
which physical access is needed.

Using the deployment type mechanism,
Sigrid® | Software Security can score and
prioritize weaknesses across a portfolio
of systems. Client teams can then focus
on fixing weakness with the highest
potential impact and exploitability.

The SIG CWE Benchmark is grounded on the tens of thousands of CVE
scores provided by thousands of security experts. Yet, those CVEs are
generic and not yet interpreted in the context of a client system or
portfolio. It may turn out that some weaknesses are already mitigated
for by specific provisions in the source code, network-level configuration,
or through smart design choices.

41

LARGE-SCALE AND FINE-
GRAINED SOFTWARE
ECOSYSTEM ANALYSIS WITH
FASTEN

Software ecosystems are massive
evolving collections of (open source)
software packages. Popular ones
such as Maven (Java), PyPI (Python),
and NuGet (.NET) include millions
of packages, which each have a
project behind them, with their own
release schedules and dependency
management strategies. Those
packages are again re-used by
millions of other pieces of software,
both libraries and applications.
Remember that modern applications
rely on (open source) software
packages for 80% or more of
their actual code? How to find and
maintain strong footing on such a
sprawling quagmire?

42

The answer of FASTEN, an EU-funded
project in which SIG collaborates with 5
European universities and companies,
is to model software ecosystems in full
detail, down to the level of individual
units of code (e.g., Java methods) and
their code level dependencies or call
graphs. In the past 3 years, the project
has developed a service that tracks
dependencies at the method call-graph
level and offers:

• Security vulnerability propagation
across call chains and dependencies
to allow focused remediation,

• Licensing compliance checking
specific to the OSS code files that are
in actual use,

• Quality risk profiles for the source
code that an application relies on.

In the last three years, the project
has implemented a series of tools and
databases to support these analyses for
the Java, C, and Python programming
languages. Work is ongoing to add
further ecosystems to the analysis
toolset, such as NuGet (.NET), and Npm
(JavaScript).

At SIG, we integrated several
components of the FASTEN project into
our software assurance platform Sigrid.
For instance, the FASTEN vulnerability
analysis is currently feeding the Sigrid
Open-Source Health and Security
modules. This integration helps Sigrid get
ahead in reporting the relevant security
vulnerabilities to our clients.

The FASTEN project has received funding from the European Union's Horizon 2020 research and
innovation program under grant agreement number 825328.

43

FASTEN FINE-GRAINED
ANALYSIS CAN TRACE CALL
CHAINS FROM APPLICATION TO
VULNERABILITY

FASTEN graph showing Log4Shell CVE-44228 vulnerability call chain

44

Using the FASTEN tools and databases
we also provide new empirical large-
scale insights on the impact of low build
quality. Starting with 10K of the most
popular Java Maven package-versions
among SIG’s clients, we analyzed 21
million code units (Java methods) with
code quality data. In addition, 11K of
those units were found to be involved in
vulnerabilities by the FASTEN tools.

Given these data, we can now cross-
correlate code quality and vulnerability
status:

• The average code unit is around 8
lines of code, with 2 branch points
and 1 parameter.

• The average vulnerable code unit has
25 lines of code, with 6 branch points
and 2 parameters.

So, the average vulnerable code unit
is indeed above the SIG recommended

low risk thresholds for both code size
(15 lines of code) and branch point
complexity (5 branch points). Obviously
not all units with poor code quality are
vulnerable, but they may indeed be at
greater risk of becoming vulnerable in
the future.

To further test this finding we trained a
multinomial logistic regression algorithm
that predicts vulnerability based on
code quality metrics. This initial attempts
reaches 67% accuracy using just the
metrics lines of code, branch points,
and parameter count. This suggests
a promising research direction with
potential accuracy gains to be made by
adding more quality information.

Let’s showcase an example analysis that FASTEN can provide. In the
graph we visualize a code base that was vulnerable to the December
2021 Log4Shell vulnerability. With FASTEN, we can trace the vulnerable
call chains from an application (yellow boxes) through various methods
in dependencies to the actual vulnerable code unit at the top (marked in
red). Such call chains allows us to provide more accurate diagnosis and
to suggest remediation efforts in a more actionable and detailed way.

45

• Manual secure code review is an
essential part of shifting left and
security by design. After all, many
types of weaknesses cannot be found
using tools alone.

• This requires effort from secure code
review experts in SIG’s lab. Their
expertise is very rare and because of
the success of SIG’s platform and its
services, the scalability of this skill is
of the greatest importance.

• Our strategy is to harness the
expertise of our experienced code
reviewers and the results of our
research into an intelligent system to
assist code review.

• Under government funding and in
collaboration with research institutes
and academia, SIG is developing
SCRAMBLE - Smart Code Review
Asistance Module Blending Leading
Expertise, to make code/design
review more consistent, efficient, and
feasible for a larger group of people
– within SIG, but also at clients and
at partners. This addresses one of
the key problems in software security:
shortage of experts.

SCRAMBLE - SMART CODE
REVIEW ASSISTANCE MODULE
BLENDING LEADING EXPERTISE

46

Hotspot
detection

Correlated
SAST/ DAST

findings

Machine
learning from

expert
decisions

Expert
review tactics

knowledge

Context
based

verification
guidance

Threat
weakness
mitigation
taxonomy

S C R A M B L E
Smart Code Review Assistance Module

Blending Leading Expertise

47

This edition of the Benchmark Report has provided several outcomes
that urge for action. In general, there is a strong need for a greater
sense of urgency in the enterprise software field regarding software
supply chain issues. Security vulnerabilities really are popping up left-
and-right at increasing pace. While this report is being written, the
Spring4Shell vulnerability emerged, with similarly critical severity as the
Log4Shell incident of 2021. And it’s only March at the time of writing! It
really feels like we are mopping up the floor with the tap still running.

HOW TO
SHIFT-LEFT ON
SECURITY AND
SOFTWARE
SUPPLY CHAIN
RISKS TODAY?

48

• In the medium to long term, this issue
should be addressed at the level of
(government) policy. Industry should
be required to comply with higher
standards – standards which are
applied in practice and which the
(cyber) security community is working
to further improve, but all-too-often
still have an optional status in actual
development.

• On the short term, besides the
general advice for raising urgency, we
recommend to act upon the following
points today, or maybe tomorrow:

• Implement full transitive dependency
analysis to become aware of all
publicly reported issues,

• Sharpen up dependency version
update policies to prevent
unmitigated use of stale and
vulnerable versions,

• Review the actual in-use
dependencies by considering
whether they are essential or largely
redundant,

• Discover any low build quality
dependencies and consider if they are
worth the risk of more vulnerabilities,

• Ensure that build quality of your own
software is up to standards (4 stars)
to lower the risk of becoming the
next vulnerability incident to hit the
papers,

• Perform automated code security
scanning on all code to find potential
weaknesses before they become
exploitable,

• Introduce tool-supported security
code review for critical systems
that addresses security-by-design,
common weaknesses in code,
mitigation strategies, and unsafe
usage of APIs or dependencies.

49

POINTS
OF ACTION

Software engineering is about continuous and
never-ending improvement. Software is never
perfect, or all-too-often, even good enough. The
world changes, but so do the tools and techniques
that are available. We are happy to see that
many engineering improvements find their way
into the enterprise software domain and make a
measurable impact.

Having said that, we must remain critical and urge
attention for our findings on third-party libraries
usage in the enterprise software domain.

50

POINTS
OF ACTION

ORGANIZATIONS MUST INVEST, TODAY, RATHER
THAN TOMORROW, IN SHIFTING-LEFT ON THEIR
SOFTWARE SUPPLY CHAIN USAGE. THIS CAN BE
ACCOMPLISHED BY INCREASING VISIBILITY OF
ISSUES DEEP-DOWN IN SOFTWARE ECOSYSTEMS AND
BY ENABLING TEAMS TO QUICKLY ADDRESS THEM.
THE BUILD QUALITY OF THIRD-PARTY LIBRARIES
IS OF EQUAL CONCERN FOR ITS USERS AS FOR ITS
OWN DEVELOPERS, AS WE HAVE SHOWN IN THIS
REPORT. IT MEANS ALSO THAT INVESTMENT IN THE
UPSTREAM (OPEN SOURCE) PROJECTS CAN BRING
GREAT BENEFITS; SINCE THAT’S WHERE MOST OF THE
SOFTWARE WE RELY ON THESE DAYS IS BEING BUILT.

AS SHOWN IN OUR YEARLY TECHNOLOGY
STACK RANKING, SOFTWARE BUILT IN LEGACY
TECHNOLOGY IS, QUITE LITERALLY, STILL THE
ELEPHANT IN THE ROOM. TECHNOLOGIES LIKE
LOW CODE AND OTHER MODERN PROGRAMMING
TECHNOLOGIES OFFER BUILD QUALITY
IMPROVEMENT POTENTIAL YET PROVIDE NO
IMMEDIATE SOLUTION TO THE OFTEN-RISKY AND
COSTLY TASK OF REPLACING THE OLD SOFTWARE
ELEPHANTS. A LOT OF ENGINEERING GRUNT
WORK AND CAREFUL MIGRATION PLANNING
IS STILL NEEDED TO ACCOMPLISH THIS; WHICH
MANY ORGANIZATIONS ARE HARD PRESSED TO
EXECUTE BY THEMSELVES.

1

2
51

3
AS AN INDUSTRY WE ARE
FACING A PRESSING SHORTAGE
OF SOFTWARE SECURITY
EXPERTISE; THERE IS SIMPLY
TOO MUCH SOFTWARE AND TOO
FEW SECURITY EXPERTS TO GO
AROUND. THE SOFTWARE BEING
DEVELOPED TODAY IS THEREFORE
AT RISK OF MISSING SECURITY
REQUIREMENTS IN DESIGN,
PROCESS, CODE CONSTRUCTION,
OR IMPLEMENTATION. WITH OUR
R&D WE ARE DEVELOPING NEW
SUPPORT TO MAKE THE JOB OF
SECURITY REVIEW EASIER AND
MORE EFFECTIVE – AT THE SAME
TIME WE LABOR FOR IMPROVED
SECURITY TRAINING AND
KNOWLEDGE SHARING WITH THE
COMMUNITY.

This edition of the Benchmark Report is
concluded with a brief summary of our
Research Vision for the coming years. We
will be happy to report our progress to
you in the coming year and in the next
edition of the Benchmark Report.

52

TOGETHER WITH
SIG ORGANIZATIONS
CAN BE CONFIDENT
IN THE SOFTWARE
THEY RELY ON
EVERY DAY

From top to bottom, all employees at any organization, irrespective
of industry, use software applications during their working day.
Technology is now prevalent and directly impacts productivity, efficiency,
revenue, and success. This high dependency means complete software
assurance is now indispensable. Organizations can only achieve this by
considering the full spectrum of software: the quality of the product(s),
the development processes, the proficiency of the teams, and the
environmental impact. Software Improvement Group (SIG) Research will
be investigating these themes to help organizations achieve a healthier
digital world.

53

Gartner recently forecasted the global
2021 spend on enterprise software will
surpass 600 Billion USD, with a projected
growth rate of 12% for 2022. To put that
number into context a 12% growth rate
means spending would double every six
years – Software is still eating the world!

Projected growth is not just a matter
of increased scale, software analysts
and technology leaders see an increase
of complexity coupled with a higher
bar of competition from start-ups and
scale-ups. Cloud- and edge computing,
microservice architecture, and digital
transformation, are continuing
challenges. Shifting-left on cybersecurity
(DevSecOps), further automation of
enterprise (data) architecture, and the
integration of machine learning and AI
technologies into mainstream production
(AIOps) are of increasing priority.
Rising energy costs are also forcing

organizations to accelerate Green IT
initiatives that improve the sustainability
of data centres and applications.

SIG Research performs scientific and
applied research to increase the
capability of our software assurance
platform and enable the enterprise to
have confidence in their applications
to reduce costs and accelerate growth.
The increasing complexity of enterprise
software demands novel ideas and
approaches for offerings to remain
competitive. SIG Research’s mission is
to increase the flow of new ideas, test
and validate them in an applied context,
and contribute to the public body of
knowledge on software engineering.

Get the full document at:

Acknowledgements
This report was compiled through a team effort across the SIG organization. Thank
you for all your contributions, helpful suggestions and review comments: Lodewijk
Bergmans, Luc Brandts, Clarinda Dobbelaar, Chushu Gao, Corina Kuijlen, Nick Potts,
Rob van der Veer, Frédéric Wolff, Femke van Velthoven and Miroslav Zivkovic.

54

Full-spectrum software assurance
research:

• Integrated models of software
product, process, and people

• Shared data platform linking
software data from all angles

• Intelligent automation of machine-
learnable software analysis

• Precise online monitoring of global
software ecosystems

• Sustainable software development
and efficient operation

Design
Plushommes.com

55

About Software Improvement Group

Software Improvement Group (SIG) helps organizations trust the technology they depend on. We’ve made it our
mission to get software right for a healthier digital world by combining our intelligent technology with our human
expertise to dig deep into the build quality of enterprise software and architecture - measuring, monitoring, and
benchmarking it against the world’s largest software analysis database.

With SIG software assurance, organizations can surface the factors driving software total cost of ownership and
make fact-based decisions to cut costs, reduce risk, speed time to market, and accelerate digital transformation.

Software Improvement Group is the first fully certified laboratory in the world to measure against the ISO 25010
standard. We make this lab accessible to our clients through our SaaS software assurance platform – Sigrid –
which enables them to take a risk-based approach to improving the health of their IT landscapes.

We serve clients spanning the globe in every industry, including DHL, Philips, ING, KLM, BTPN, Weltbild, KPN, as
well as leading European governmental organizations.

SIG was founded in 2000 as an independent technology company with embedded consulting services. SIG is
headquartered in Amsterdam, with offices in New York, Copenhagen, Antwerp and Frankfurt.

Learn more at www.softwareimprovementgroup.com.

Fred. Roeskestraat 115

1076 EE Amsterdam

The Netherlands

www.softwareimprovementgroup.com

marketing@softwareimprovementgroup.com

Legal Notice
This document may be part of a written agreement between Software Improvement Group (SIG) and its customer, in which case the
terms and conditions of that agreement apply hereto. In the event that this document was provided by SIG without any reference to a
written agreement with SIG, to the maximum extent permitted by applicable law this document and its contents are provided as general
information ‘as-is’ only, which may not be accurate, correct and/or complete and SIG shall not be responsible for any damage or loss
of any nature related thereto. All rights are reserved. Unauthorized use, disclosure or copying of this document or any part thereof is
prohibited.

